

## Catalytic Upgrading of Biochemical Intermediates (CUBI) 2.3.1.101-104

Rigak

# 2021 BETO Peer Review - ChemCatBio

Rick Elander<sup>1</sup>, Zhenglong Li<sup>2</sup>, Vanessa Dagle<sup>4</sup>, Cameron Moore<sup>3</sup>, Derek Vardon<sup>1</sup>, David Johnson<sup>1</sup>



## March 10, 2021



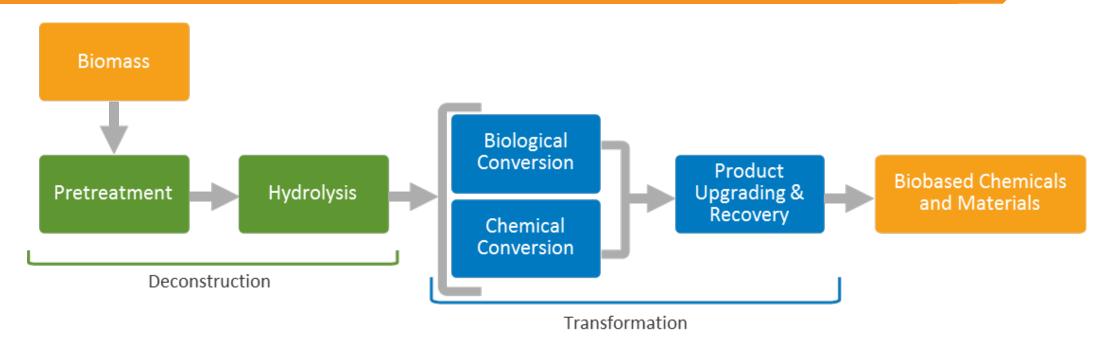
Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

**BIOENERGY TECHNOLOGIES OFFICE** 



# Biochemical Conversion TEA – Introduction

**Biochemical Process Analysis Team** 


Ryan Davis, lead Andrew Bartling Bruno Klein Ian McNamara Ling Tao



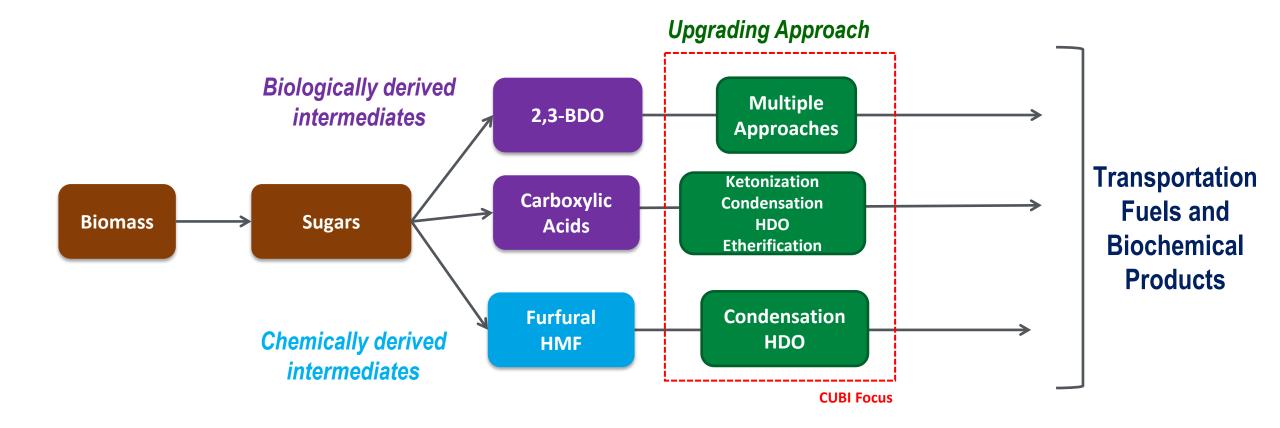


Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

**BIOENERGY TECHNOLOGIES OFFICE** 



## **Deconstruction**


- Thermal/chemical/mechanical pretreatment to reduce biomass recalcitrance
- Enzymatic saccharification to produce sugars
- Depolymerization of lignin

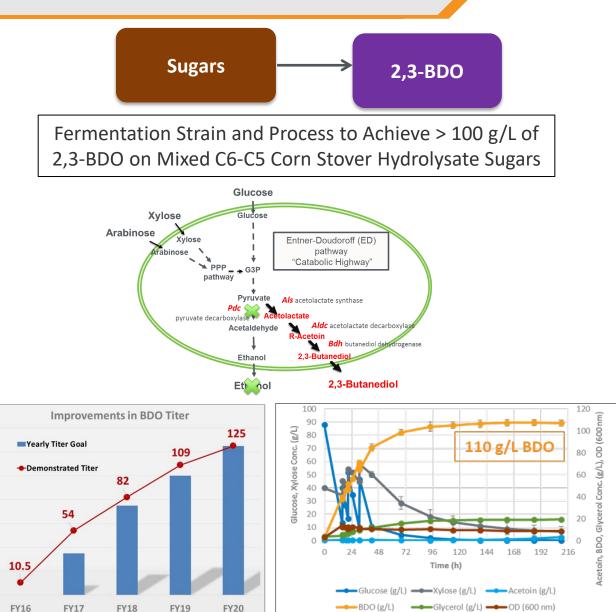
## **Transformation**

- Biological conversion of sugars to upgradeable intermediates for fuel/chemical products
- Catalytic conversion of biological intermediates
   CUBI
- Catalytic conversion of sugars/furans
- Biological/catalytic conversion of lignin-derived intermediates

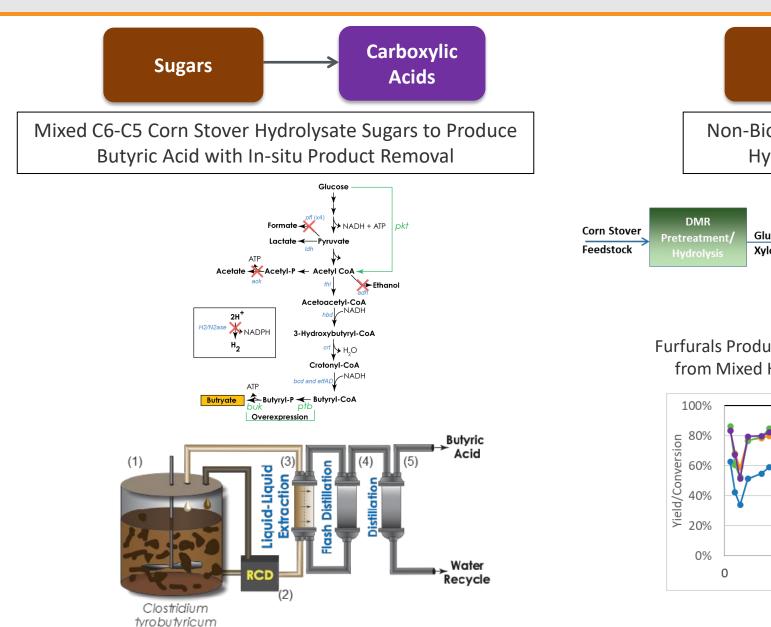
**Focus** 

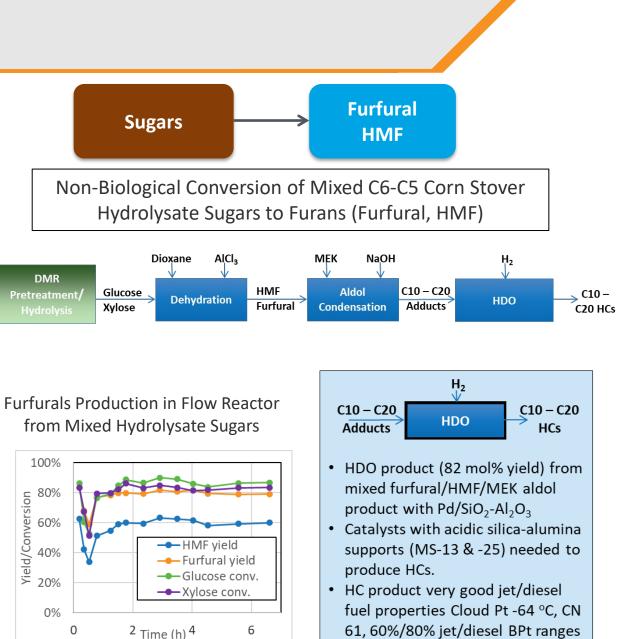
## CUBI Overview – Primary Intermediates and Routes




4

## **Generation of Biochemical Intermediates**

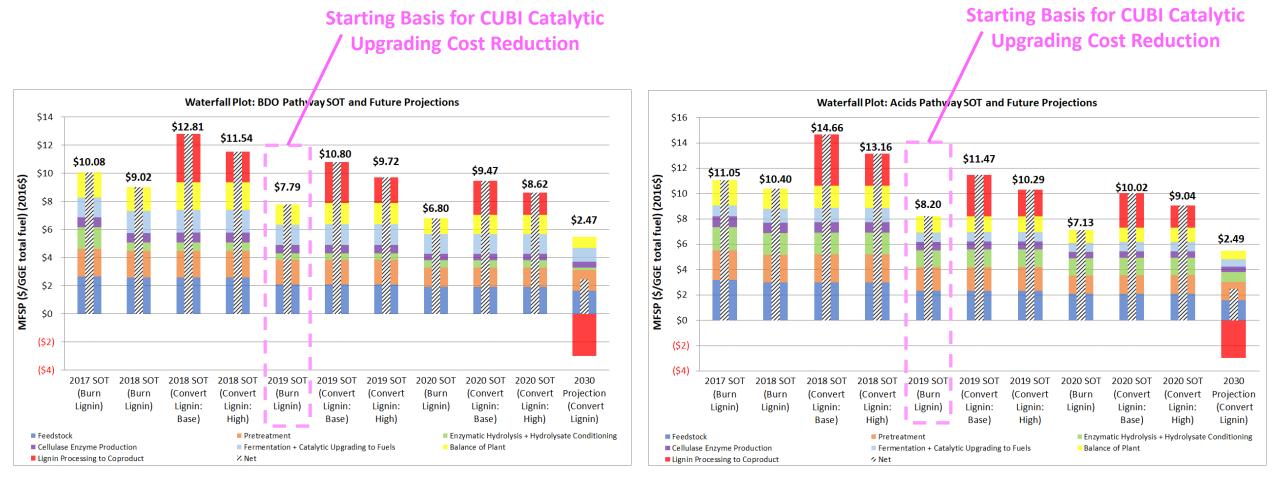




Enzymatic hydrolysis sugar yield (7 day)

- Solids loading : 20% (w/v)
- Enzyme Loading: 10 mg protein/g glucan (Novozymes Ctec3/Htec3)



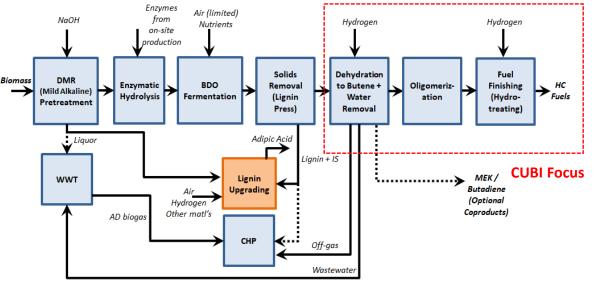
## **Generation of Biochemical Intermediates**





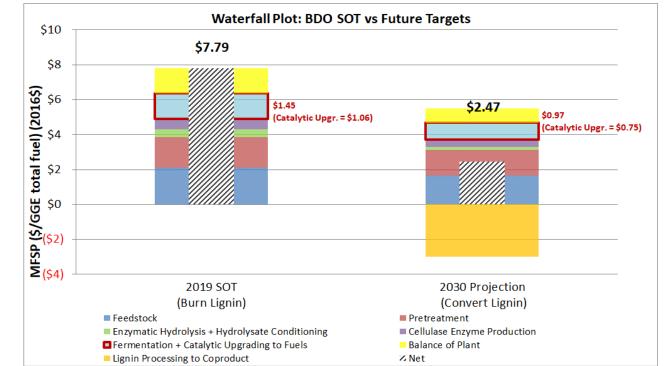

## State of Technology Progression for Biochemical Process Routes

## 2,3-BDO Pathway

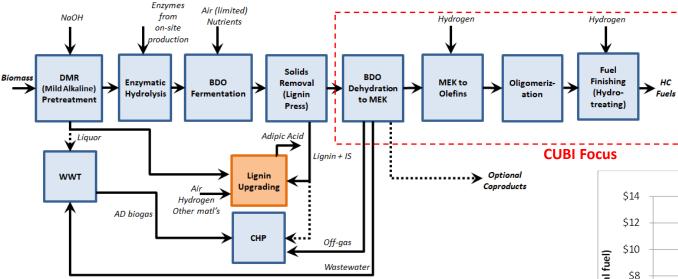

#### **Carboxylic Acids Pathway**



2020 Biochemical Conversion State of Technology (Ryan Davis et al., NREL)

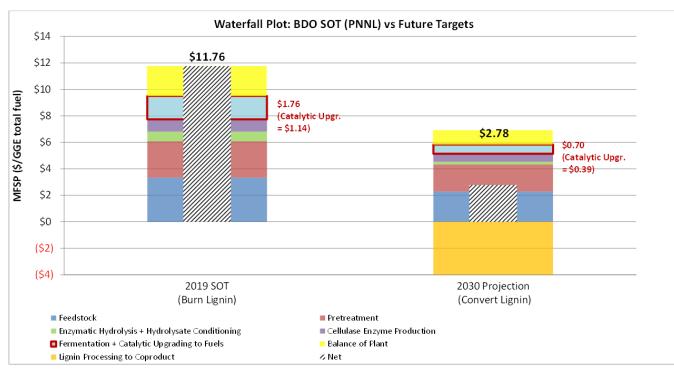

7

## CUBI TEA Modeling: BDO (Biological) to Fuels

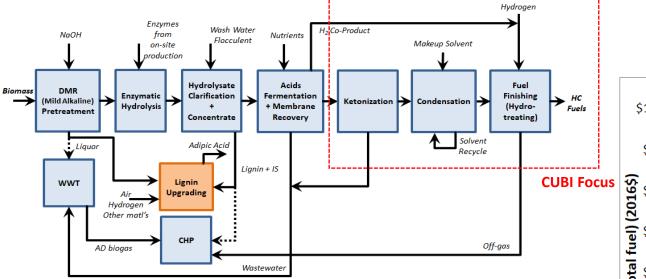



## Key Drivers/Risks/Gaps

- Catalyst cost: higher WHSV, robustness/ lifetime
- Reduce energy demands via lower T in BDO upgrading
- Extent of cleanup requirements for clarified BDO (polishing filtration/IX?)
- High water content more concentrated BDO (Separations Consortium)

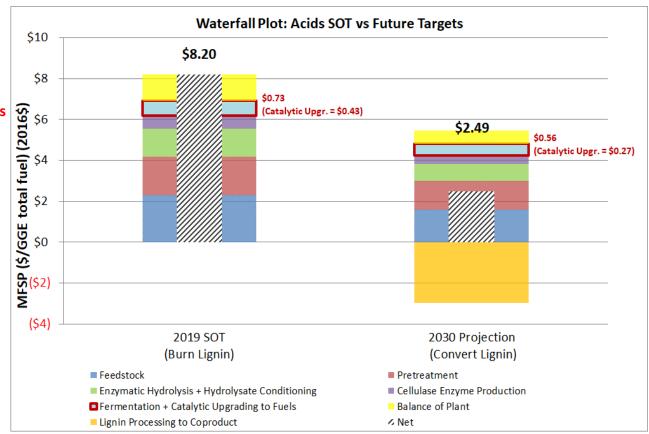



## CUBI TEA Modeling: BDO (Biological) to Fuels via MEK

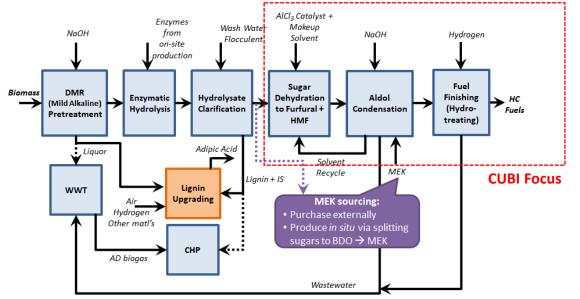



## Key Drivers/Risks/Gaps

- Improved carbon yield for dehydration step
- Reduce energy demands/costs via lower T (BDO upgrading) and/or condensed phase upgrading
- Extent of cleanup requirements for clarified BDO (polishing filtration/IX?)
- High water content more concentrated BDO (Separations Consortium)

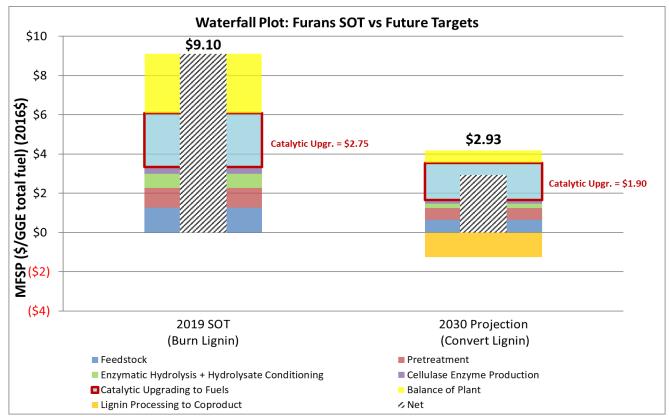



## CUBI TEA Modeling: Carboxylic Acids (Biological) to Fuels

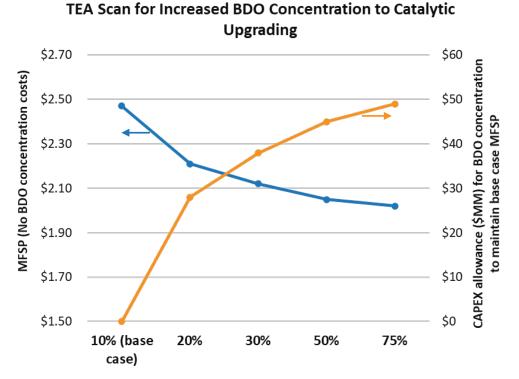



## Key Drivers/Risks/Gaps

- Catalyst cost: higher WHSV (ketonization), less costly metallurgy (HDO)
- Reduce energy demands via lower solvent loading (condensation), lower T (ketonization/HDO)
- Condensation operating logistics (catalyst recovery/regeneration in slurry CSTR)




## CUBI TEA Modeling: Furfurals (Catalytic) to Fuels




## Key Drivers/Risks/Gaps

- Increase conversions/yields; minimize solvent loading (dehydration)
- MEK sourcing purchased externally (dedicated case) or produced *in situ* (integrated case)
- **High fuel yields** (1.4X) vs BDO/acids pathways (low CO2 production) but higher opex/energy demands



## TEA Analysis - BDO to olefins route: Effect of reduced water content on MFSP (2030 Design Case)



BDO concentration to catalytic upgrading (wt%)

- A more concentrated BDO stream (especially from 10 wt% to 30 wt%) has a significant impact on projected MFSP
- Analysis allows for determination of allowable costs to achieve original MFSP

## <u>Water Removal Technology Evaluation – BDO Fermentation Broth</u>

| Technology                                               | Note                                                    | Findings                                                                                                |  |
|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Vacuum<br>evaporation<br>(Baseline)                      | Near-term consideration<br>(bench scale & pilot plant)  | BDO loss, likely part of<br>process but additional<br>processes needed                                  |  |
| Membrane<br>separations<br>(Pervaporation<br>dewatering) | Type A membranes:<br>Polymer-GO composites              | <ul> <li>SF = 25,</li> <li>Flux up to 0.5 LMH,</li> <li>High vacuum (28-29 inHg) required</li> </ul>    |  |
|                                                          | Type B membranes:<br>Hydrophobic nanoporous<br>ceramics | <ul> <li>SF = 21,</li> <li>Flux up to 0.6 LMH,</li> <li>Very mild vacuum (0-6 inHg) required</li> </ul> |  |
| Sorbent<br>extraction<br>(BDO-selective)                 | Hydrophobic MOFs and zeolites                           | Could separate BDO,<br>glycerol, acetoin<br>Remove other impurities                                     |  |

Michael Hu (ORNL), 2019 CUBI seed project on BDO broth separations



## Catalytic Upgrading of Biochemical Intermediates (CUBI) 2.3.1.101-104

Rigak

# 2021 BETO Peer Review - ChemCatBio

Rick Elander<sup>1</sup>, Zhenglong Li<sup>2</sup>, Vanessa Dagle<sup>4</sup>, Cameron Moore<sup>3</sup>, Derek Vardon<sup>1</sup>, David Johnson<sup>1</sup>



## March 10, 2021

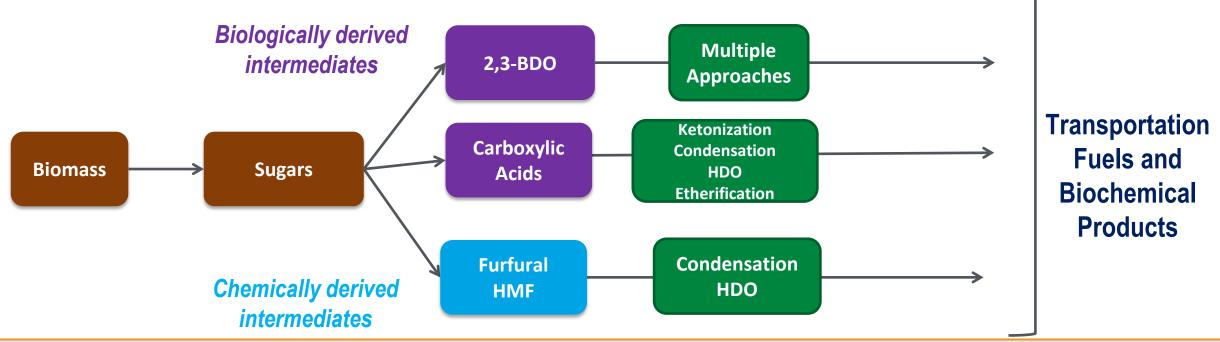


Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

**BIOENERGY TECHNOLOGIES OFFICE** 

## Integrated and collaborative portfolio of catalytic technologies and enabling capabilities

| Catalytic Technologies                       | Enabling Capabilities            | Industry Partnerships |
|----------------------------------------------|----------------------------------|-----------------------|
| <b>Catalytic Upgrading of Biochemical</b>    | Advanced Catalyst Synthesis and  | (Phase II Directed    |
| Intermediates                                | Characterization                 | Funding)              |
| (NREL, PNNL, ORNL, LANL)                     | (NREL, ANL, ORNL)                | <b>Opus12</b> (NREL)  |
| Upgrading of C1 Building Blocks              | Consortium for Computational     | Visolis (PNNL)        |
| (NREL)                                       | Physics and Chemistry            | Sironix (LANL)        |
| Upgrading of C2 Intermediates                | (ORNL, NREL, PNNL, ANL, NETL)    |                       |
| (PNNL, ORNL)                                 | Catalyst Deactivation Mitigation |                       |
| Catalytic Fast Pyrolysis                     | for Biomass Conversion           |                       |
| (NREL, PNNL)                                 | (PNNL)                           |                       |
| Electrocatalytic CO <sub>2</sub> Utilization |                                  |                       |
| (NREL)                                       | Current Curtifican Current       |                       |
|                                              | Cross-Cutting Support            |                       |


ChemCatBio Lead Team Support (NREL)

**ChemCatBio DataHUB** (NREL)

## **Project Overview**

## **Project Goal:**

- Improve the **catalytic upgrading of targeted biochemically-derived intermediates** to hydrocarbon fuels and chemical co-products by performing focused and integrated R&D for:
  - Development of catalysts with **improved performance and durability**
  - Mitigation of **process-derived inhibitors**, including water
  - Evaluating integrated and intensified processes to reduce separations requirements and improve carbon utilization



## **Upgrading Approach**

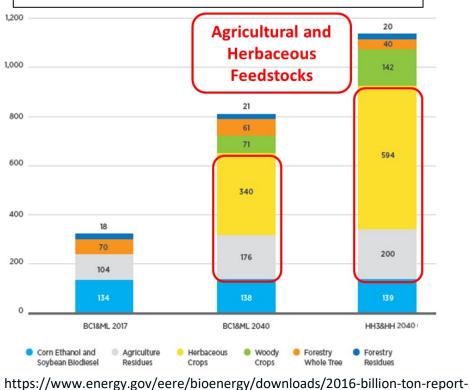
## Project Outcomes:

- Achieve 25% to 33% cost reduction (depending on pathway) in the catalytic upgrading process area of an integrated biochemical conversion process to enable overall an MFSP of <\$2.5/GGE</li>
- Reduce reliance on lignin co-product valorization in biochemical conversion processes by demonstrating large-market chemical co-product opportunities from biochemical intermediates that can provide >25% of required co-product valorization revenue
  - Example: 2,3-BDO to butadiene, MEK, iso-butanol

## Heilmeier Catechism:

- What: Develop and improve catalytic upgrading of biochemical intermediates to fuels and platform chemicals in an integrated process context
- **Today:** Biochemically-derived intermediates used in catalytic upgrading are generally derived from clean sugars with low water content and few inhibitors
- Importance: CUBI project is the primary effort within BETO portfolio for "downstream" Biochemical Conversion process development and integration
- **Risks:** Impacts of inhibitors found in real biochemical conversion process streams on catalyst performance/stability/lifetime and how to mitigate is not understood

## **Project Overview**

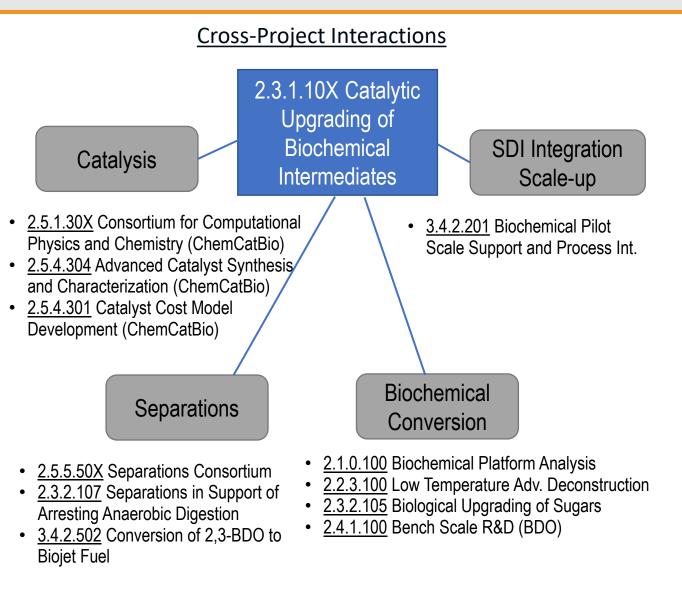

## **Key Differentiators**

**ChemCatBio** 

- Facilitate transition from catalytic upgrading of Gen 1 sugars (cane and starch-derived) to cellulosic sugars/derived intermediates
- Focusing on largest segment of projected biomass feedstock resource base (ag residues and herbaceous energy crops)
- Provide a quantitative performance and economic assessment of several catalytic upgrading approaches using biomass hydrolysis/fermentation intermediates
- Quantify performance and economic impacts of **biogenic inhibitors**
- Exploit the **specificity of intermediate compounds** generated via **biochemical deconstruction** and **biological upgrading**



US Biomass Resource Availability by Type (million dry tons/year)

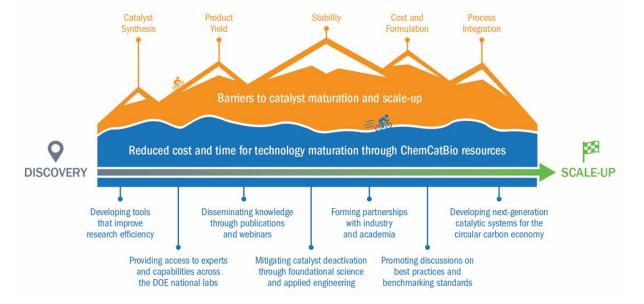



volume-2-environmental-sustainability-effects

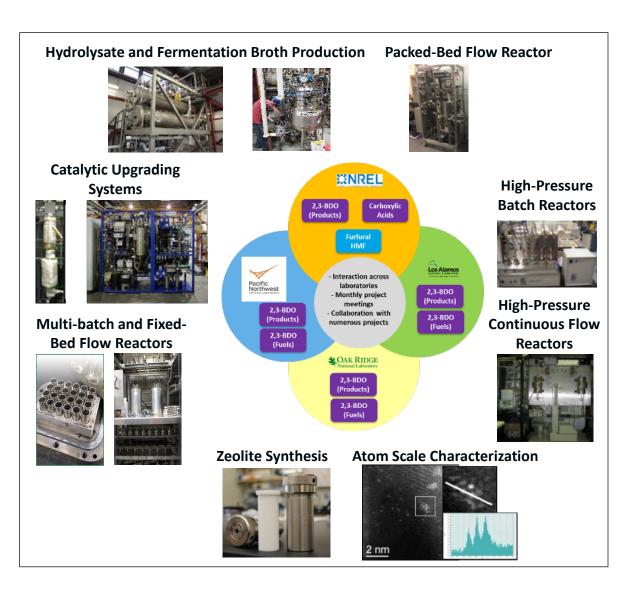
## 1 - Management

#### Capabilities and Expertise Across Multiple National Laboratories • Catalyst/process development on targeted • Catalyst/process development ©NREL routes on targeted routes • Hydrolysate/fermentation intermediates • High-throughput catalyst • Fuel property testing 2,3-BDO Carboxylic testing and characterization (Products) Acids • TEA • Fuel property testing **Furfural** • TEA HMF Los Alamos Interaction across Pacific laboratories Northwest 2.3-BDO - Monthly project (Products) meetings 2,3-BDO - Collaboration with 2,3-BDO (Products) numerous projects (Fuels) • Catalyst/process development 2,3-BDO on targeted routes (Fuels) HDO optimization in flow CAK RIDGE reactors • Catalyst/process development on targeted 2.3-BDO Catalysis-assisted phase routes (Products) separation for aqueous product Zeolite expertise applied to biomass 2.3-BDO recovery derived alcohols/diols (Fuels) • Coordination with Separations Consortium

## 1 - Management




#### **Risk Identification and Mitigation**


- A primary project focus in FY20-21 is on processintegration associated risks
  - Impacts on catalyst performance/stability/lifetime in real biochemical conversion process streams

| Identified Risk                                                                             | Mitigation Approach                                                                                                                                                                                                                    |  |  |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Water impacts on BDO<br>upgrading (aqueous<br>fermentation broth)                           | <ul> <li>Identify costs/process options to remove varying levels of water</li> <li>Catalyst inactivation characterization</li> <li>BDO upgrading in gas phase</li> </ul>                                                               |  |  |  |
| Catalyst inhibitors from<br>feedstock/hydrolysate/<br>fermentation broth                    | <ul> <li>Identification/mechanism of inhibition</li> <li>Regeneration methods and performance</li> <li>Upstream process modifications (feedstock preprocessing, pretreatment chemicals, fermentation by-product management)</li> </ul> |  |  |  |
| Excessive coking of the<br>acid metal oxide<br>catalysts for central<br>ketone condensation | <ul> <li>Evaluate impact of temperature and metal oxide acid strength on sustained ketone condensation performance</li> <li>Validate regeneration strategies following continuous operation</li> </ul>                                 |  |  |  |

## 2 – Approach



- Advancing catalytic upgrading process performance and robustness to produce a range of targeted, specific fuel molecules and chemical co-products
  - Synthesis, yield, stability, cost, integration
  - Focusing on key risks (inhibitor mitigation)
  - Utilizing experimental and characterization capabilities and modeling tools across 4 CUBI labs and CCB Enabling Projects



To address **key challenges**, multiple catalytic upgrading routes investigated and evaluated in a coordinated manner using common materials, analytical techniques, reactor systems, fuel characterization methods, and TEA tools

#### **Success factors**

Demonstrate catalytic upgrading to HC fuel routes that have commercial relevance and interest

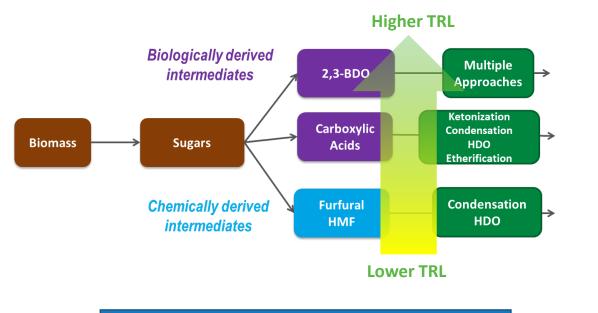
Quantify **impurity impacts from biochemical deconstruction/ upgrading** on catalytic upgrading routes.

Define **specifications for deconstruction/fermentation streams** for catalytic upgrading, including identification of separations/clean-up needs.

#### Challenges

Numerous biochemical-derived intermediates options → multiple catalytic upgrading routes/ approaches

Biomass-derived catalyst inhibitors from feedstock, deconstruction unit & intermediates- production units


Multiple considerations in optimizing conversion unit operations makes definition of process-stream specifications challenging to meet TEA targets.

#### Strategy

Coordinate with Biochemical conversion projects to focus on intermediates with cost-potential and broad market size applicability

Comparative assessment of pure & biomass-derived intermediates to identify catalyst inhibitors (including water)

Coordinate efforts across projects & multi-lab consortia to focus on critical process-wide considerations: Feedstock selection/specification, Separations/purification, Fundamental catalyst design/process



#### Go/ No-Go Decision

**6/30/2021**: Focusing of 2,3-BDO Upgrading Pathways to Fuels and Co-products. BDO upgrading pathway options must achieve the partial cost reduction targets (achieve 30% of the end-of-project milestone target) to continue pathway development in FY21-22. **Focus on BDO pathways**.

## **Biochemical Conversion Pathways**

- Pathways identified and selected within broad BETO Biochemical Platform context
- CUBI project is a coordinated effort to develop catalytic upgrading of biochemical intermediates in a collaborative and comparable manner

#### End-of-project milestone

**9/30/2022**: Demonstrate improvements consistent with a cost reduction from 25% to 33% (depending on pathway) compared to FY19 SOT in catalytic upgrading of biochemical process-derived carboxylic acids, 2,3-BDO and furfurals intermediates. **For all pathways**: BDO, carboxylic acids & furfurals

22

## 3 - Impact

**ChemCatBio** 

- Documenting improvements in catalytic upgrading area of biochemical conversion design reports and annual SOTs
  - The primary project for catalytic upgrading development and application for BETO biochemical conversion routes
- Numerous impactful publications in major journals fundamental characterization and process applications
  - 11 peer-reviewed publications (2019-present)
  - 3 patent applications/issued patents (2019-present)
- Industrial engagement for catalyst development and process development – utilizing catalytic upgrading technologies developed within project
  - Competitively-awarded TCF and FOA projects with cost-sharing partners for sustainable aviation fuel applications are leveraging DOE/BETO investments



OF CHEMISTR

ion of Lignocellulosic Biomass to rbon Fuels and Coproducts: 2018

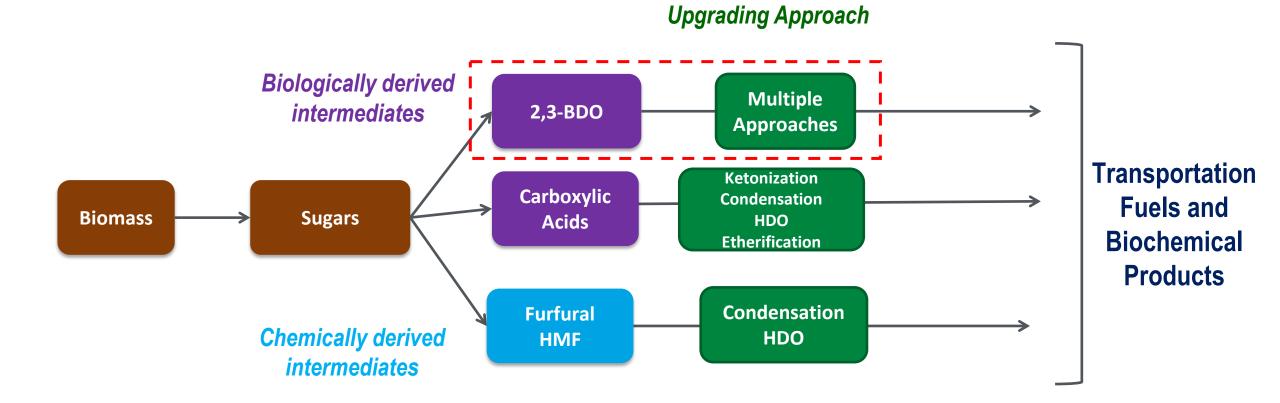
Green

Green Chemistry

Chemistry

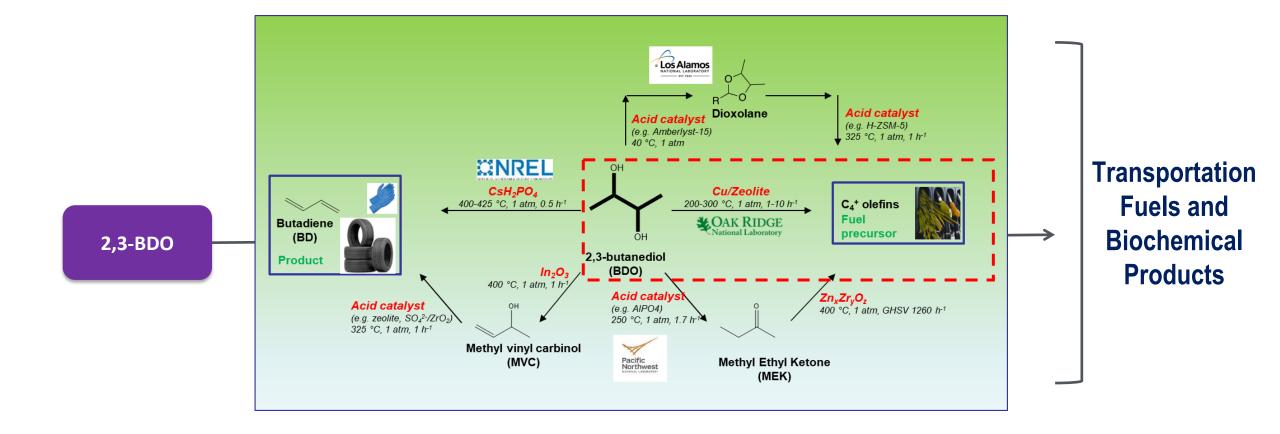


rsc.li/sustainable-ener


Single-step Conversion of Methyl Ethyl Ketone to Olefin

over Zn.Zr.O. Catalysts in Water

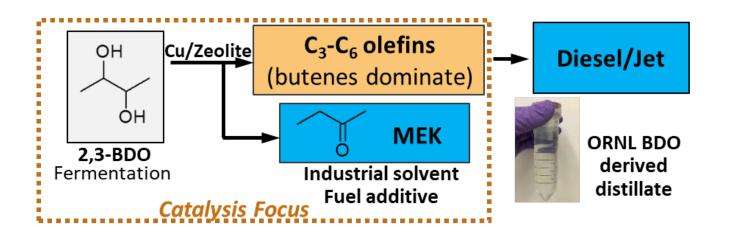
Pacific Northwest


CHEMCATCHEN

## 4 – Progress and Outcomes



**ChemCatBio** 


24



25



**Goal:** Develop catalyst technology to produce middle distillate and chemical coproducts from biomassderived 2,3-BDO with high carbon conversion efficiency and catalyst stability

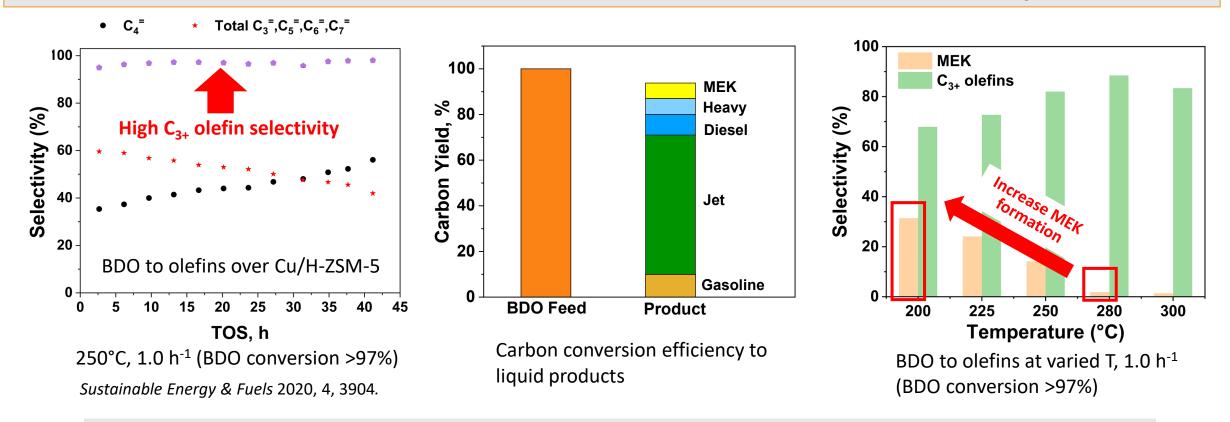


## Advantages

- One step highly selective production of C<sub>3</sub>-C<sub>6</sub> olefins
- Co-production of MEK
  - tune the co-product yield
- High distillate yield

## **R&D objectives:**

- 1) **Demonstrate the pathway** of BDO to middle distillate
- 2) Address catalyst deactivation associated with coke formation, impact of water and fermentation impurities for BDO to olefins step
- 3) Advance the state of technology



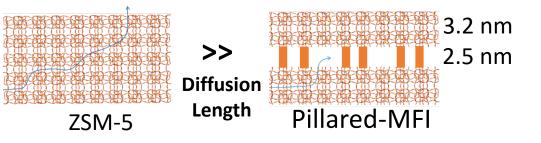

Sustainable Energy & Fuels, 2020, 4, 3904.

# Progress and Outcomes: BDO to Middle Distillate & Coproduct



## **Goal:** Demonstrate BDO conversion to middle distillate and MEK via one-step BDO to $C_{3+}$ olefins



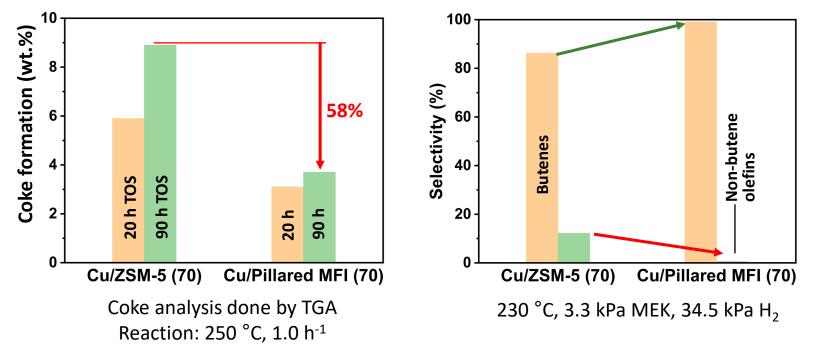

## **Outcomes:**

- BDO is selectively converted to C<sub>3+</sub> olefins (>95%), leading to high carbon conversion efficiency into the liquid hydrocarbons (>85%)
- **Coproduction of MEK** can be achieved via tuning reaction conditions (e.g., T, H<sub>2</sub> partial pressure)

# Progress and Outcomes: Mitigate Coke Formation for BDO to Olefins



## Goal: Cu/Pillared-MFI (P-MFI) to mitigate coke formation and promote butene formation



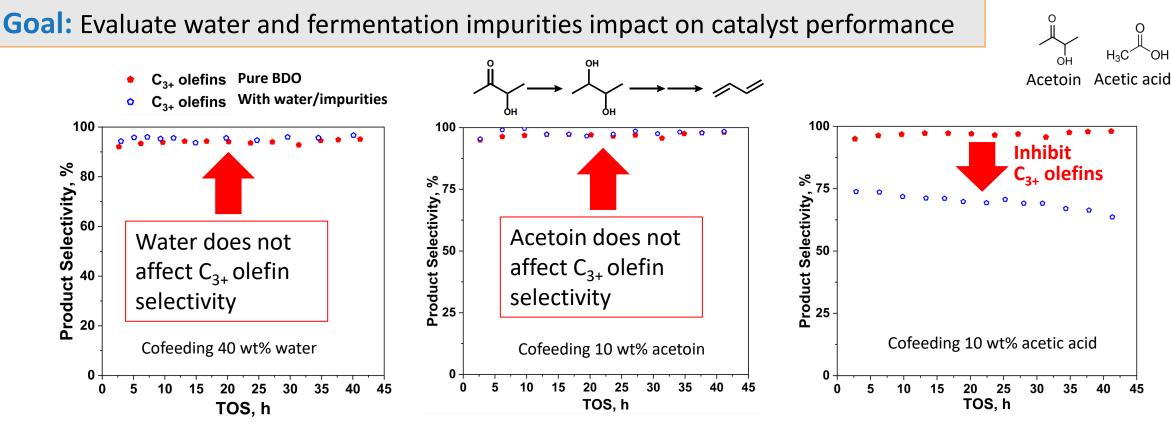

## 2D Pillared-MFI Zeolite:

- Reduced diffusion length
- Better mesopore connectivity

## *Cu/P-MFI reduces coke formation*

## Cu/P-MFI favors butene formation




#### **Outcomes:**

- Cu/Pillared-MFI can reduce
   coke formation by >50% for
   BDO conversion to olefins
- Unique properties of P-MFI favor selective formation of butenes by inhibiting butene oligomerizations and further cracking reactions

Adhikari and Zhang et al. In preparation

# Progress and Outcomes: Water and Fermentation Impurities Impact

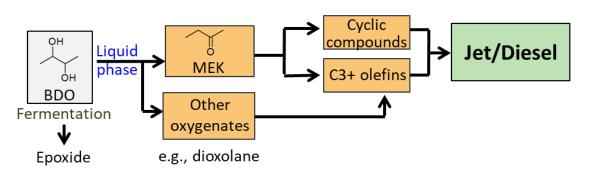




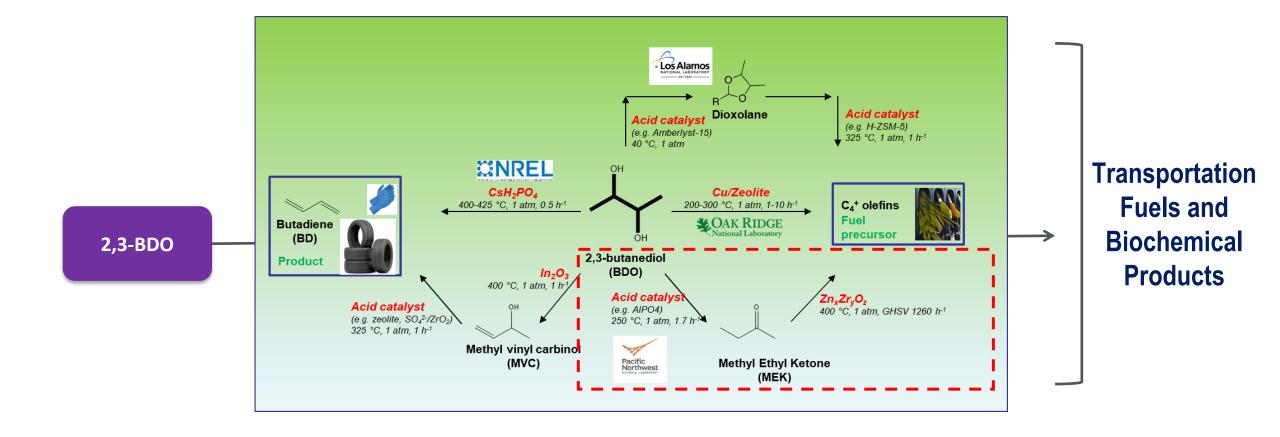
Cu/H-ZSM-5, 250 °C, 1.0 h<sup>-1</sup>, 0.22 mL/h liquid flow, 30 cm<sup>3</sup>/min H<sub>2</sub>, BDO conversion 97-100%

- Presence of water does not impact catalyst performance, allowing direct upgrading of aqueous BDO
- Acetoin is converted to butenes to allow high carbon recovery, not affecting catalyst performance
- Acetic acid inhibits formation of C<sub>3+</sub> olefins due to accelerated coking and Cu sintering (ACSC)
- Provide guidance for *separation R&D* to mitigate the impact on catalyst

# Research Progress Summary and Future Work



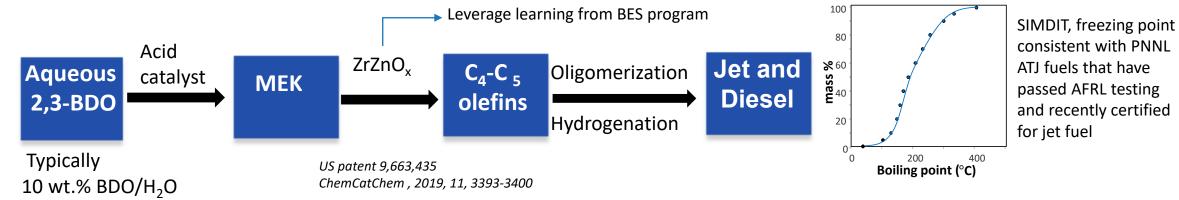

## **Catalysis R&D efforts significantly advance the key BDO to olefin catalyst performance**


|               | Catalyst                              | Single-pass<br>conversion<br>(%) | C <sub>3</sub> -C <sub>6</sub> Olefin<br>Selectivity (%) | Productivity<br>(g/g <sub>cat</sub> /h) | Durability <sup>#</sup><br>(h) | BDO<br>Feed             | MFSP<br>(\$/GGE)  |
|---------------|---------------------------------------|----------------------------------|----------------------------------------------------------|-----------------------------------------|--------------------------------|-------------------------|-------------------|
| FY17 baseline | Cu/SiO <sub>2</sub> @ZrO <sub>2</sub> | 100                              | 30                                                       | 0.18                                    | < 5                            | Pure                    | 10.08             |
| Current       | Cu/P-MFI*                             | 100                              | >95                                                      | 1.80                                    | >100                           | Pretreated<br>BDO broth | 7.79 <sup>§</sup> |

\*Cu/pillared MFI, 250°C, WHSV=3.0 h<sup>-1</sup>, 1 atm; #TOS for each cycle, C<sub>3</sub>-C<sub>6</sub> olefin selectivity changes <20%; <sup>§</sup>FY19 SOT

## Future catalysis R&D focuses on addressing water separation challenges and diversify the product portfolios




- BDO liquid phase upgrading to oxygenates
  - 1<sup>st</sup> step (BDO to MEK): explore acid catalysts (jointly with PNNL)
  - 2<sup>nd</sup> step: dioxolane to olefins (with LANL)
- Collaboration with CDM, ACSC and CCPC to understand catalyst deactivations in hot liquid water (FY21 Q4 milestone)
- BDO to value-added co-product epoxide
  - Explore catalysts and conditions in FY21



# 2,3-Butanediol (BDO) Upgrading to Fuel via Methyl Ethyl Ketone (MEK) Intermediate



# **Objective: Develop a marketable catalyst and process to upgrade 2,3-butanediol (BDO) to fuels & Chemicals.**



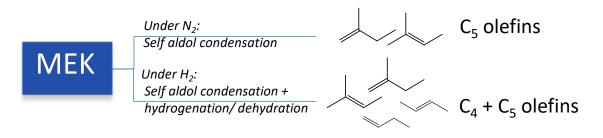
## 2-step process via MEK enables:

- Co-products diversification beyond MEK de-risk credit form lignin to adipic acid
- Operate with aqueous 2,3-BDO feedstock (BDO/H<sub>2</sub>O separation is energy intensive)
- Operate with or without H<sub>2</sub>



In collaboration with ACSC

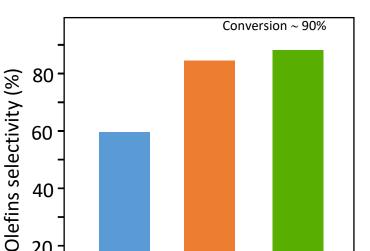
40


20

0

FY18

# Pacific Northwest


## **Progress toward carbon efficiency**



## $Zn_1Zr_{10}O_x$ uniqueness:

- Acid properties  $\rightarrow$  aldol condensation
- Redox properties→ hydrogenation





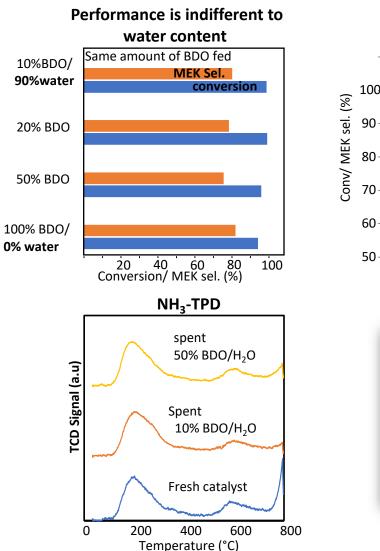
FY19

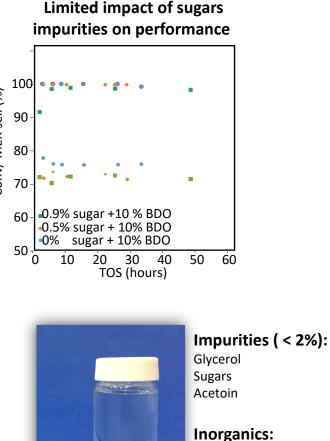
FY20

**Increased carbon efficiency** 

## **Key findings:**

- Demonstrated reaction mechanism
- Discovered olefins product distribution & yield varies with environment ( $N_2$  vs.  $H_2$ ): Higher yield under  $H_2$
- Improved MFSP (2030 projection) from \$3.40 (2018) to \$2.78 (2019)


#### **Future work:**


Update TEA & MFSP in FY21

**Outcome: The carbon efficiency of** the 2-step BDO to olefins process was improved with >82% olefins selectivity at 90% conversion



## Progress beyond carbon efficiency to address feedstock risks





Clean BDO broth

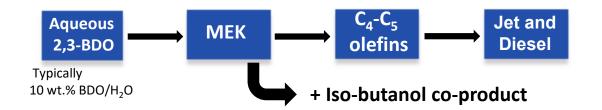
K/Na/P

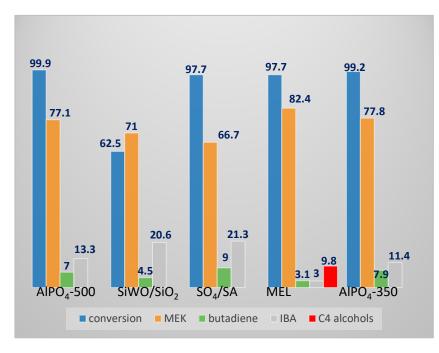
#### **Key findings:**

- Demonstrated water content in the feed does not impact catalytic performance or catalyst structure and surface properties for TOS ≤ 100 hours
- Initiated impurities study:

acetoin, sugars = limited change is activity glycerol = Loss of activity (due to coking)

#### Future work:


 Investigate the catalytic upgrading of 2,3-BDO to MEK in condensed phase and associated deactivation as needed in collaboration with CDM


Outcome: The catalytic performance is not affected by the water content ( TOS ≤ 100 hours) indicative of process flexibility

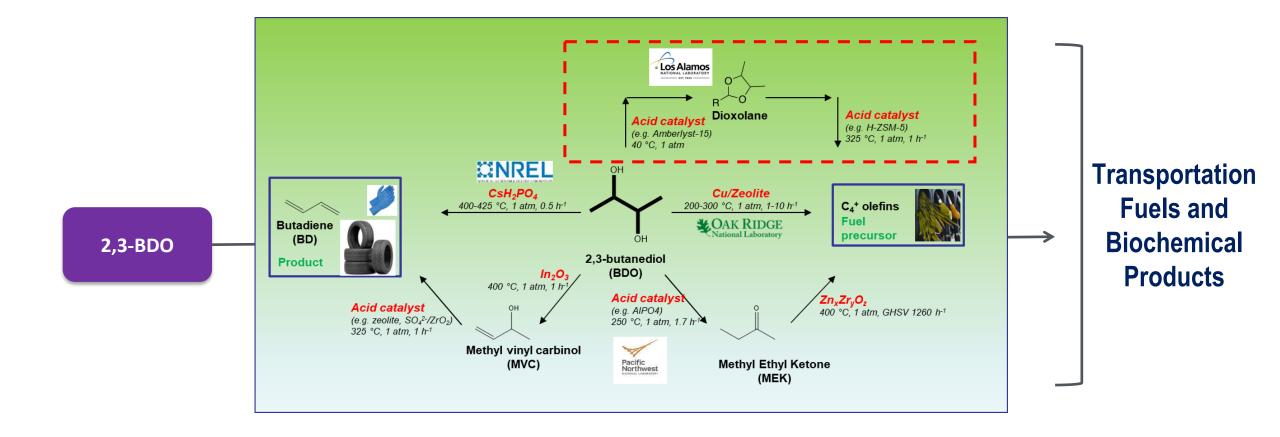


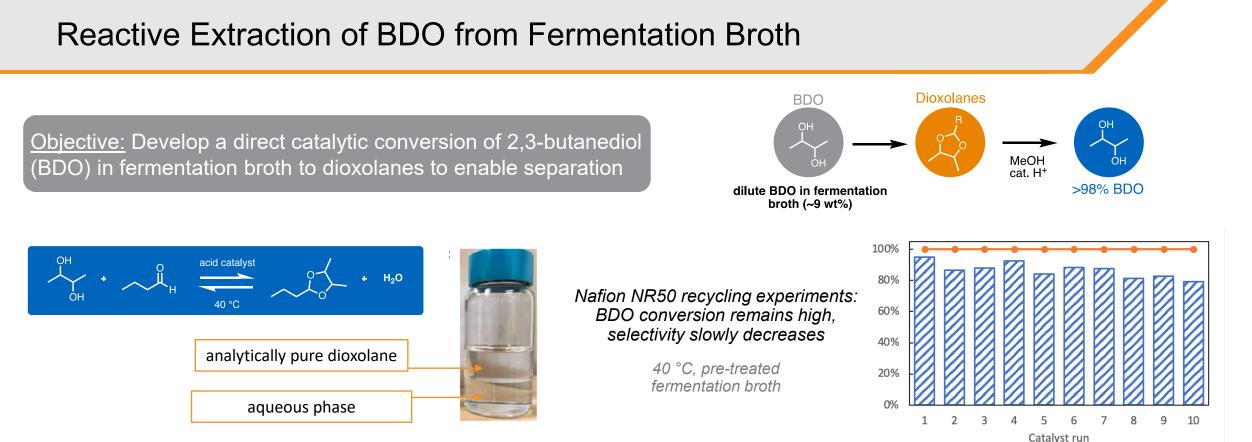
## **Progress beyond carbon efficiency to address lignin risk**

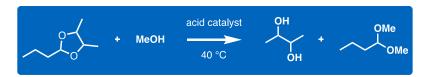
This effort is to address FY19 peer review comment: "The overall success of the project is dependent on the success of the lignin valorization projects"






#### **Key Findings:**


- The 2-step conversion of 2,3-BDO to olefins offers co-product diversification beyond MEK.
- Iso-butanol can be produced along MEK
- Established collaboration with Luxfer-MEL for catalyst development


## Future work:

- Catalyst screening & reaction parameters investigation to tune iso-butanol/ MEK ratio
- Collaborate with CCPC for understanding the nature of the reaction intermediates and parameters favoring iso-butanol formation

Outcome: Discovered a new pathway for iso-butanol production from 2,3-BDO

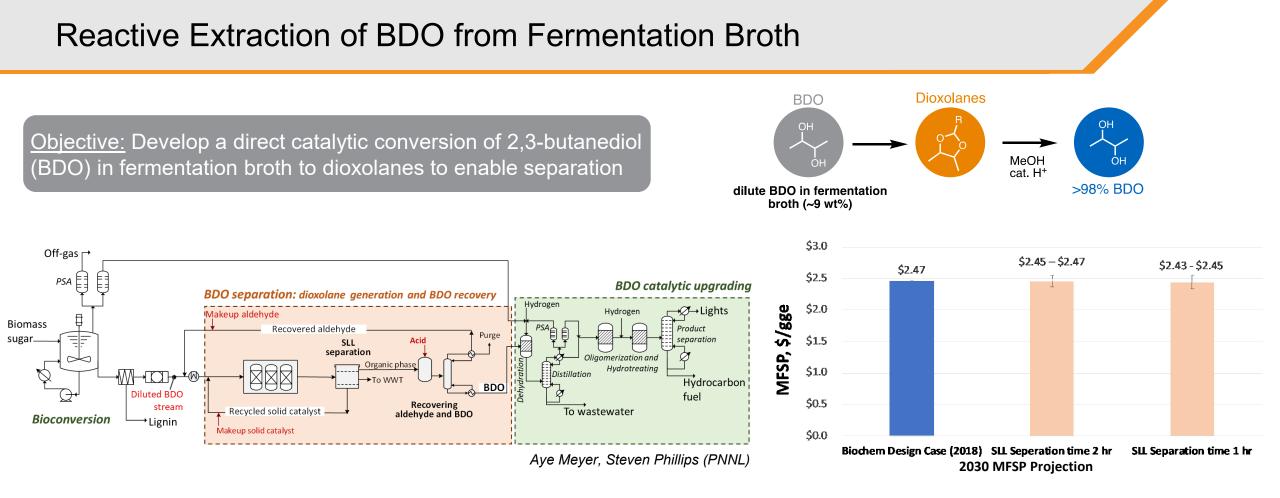






- 1 g scale: 75% isolated BDO yield
- 10 g scale: 90% isolated BDO yield
- >98% BDO purity without chromatography
- Dimethoxybutane (DMB) readily removed along with MeOH via distillation; converted back to butyraldehyde via catalytic hydrolysis

#### Outcome:


 Recovered BDO from real fermentation broth in >98% purity via reactive extraction and transacetalization

vield of dioxolane

- Pre-treatment of broth increases catalyst lifetime
- Future work: collaboration with SepCon to evaluate pre-treatment strategies to increase catalyst efficiency for dioxolane formation directly in fermentation

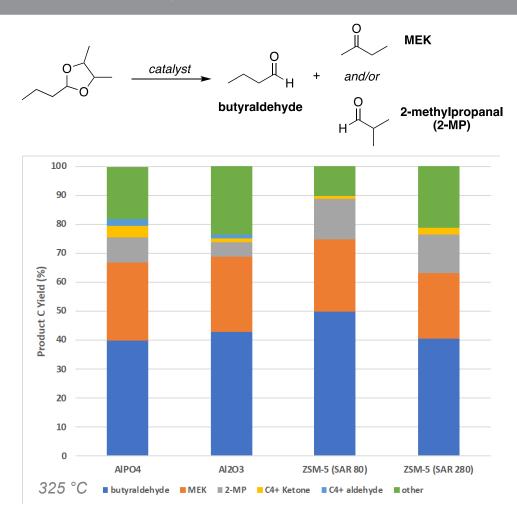
#### **ChemCatBio**

——— conversion of BDO

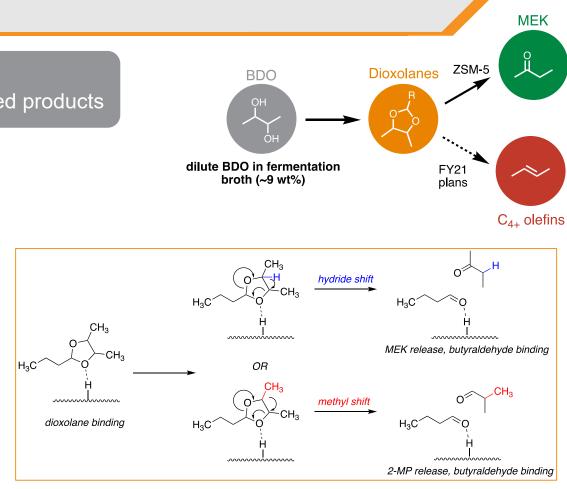


#### **Preliminary TEA**

- Biochem design case:
  - Diluted BDO stream going to dehydration reactors
  - Capital and energy intensive to concentrate BDO

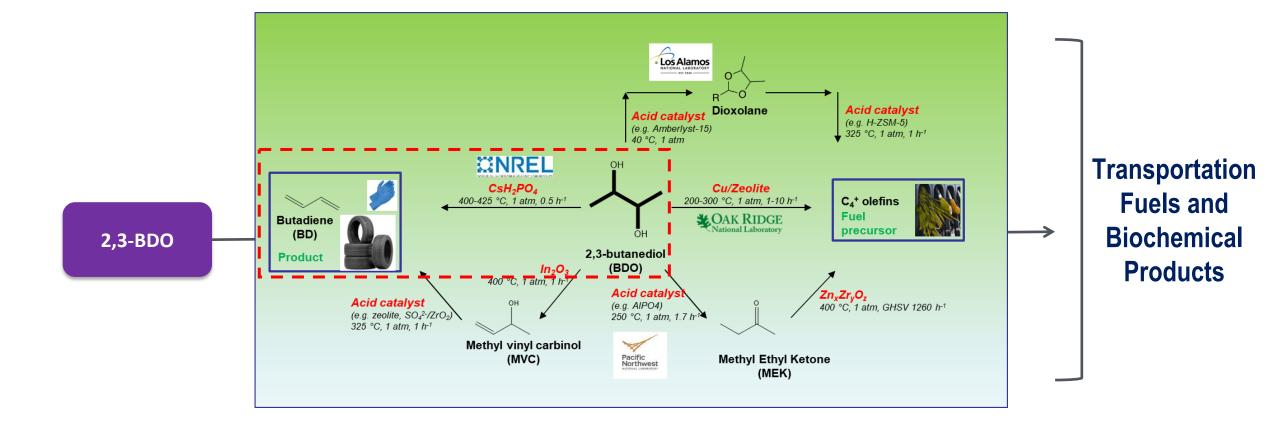

• Dioxolane case:

- ~\$10M saved in total capital investment
- Lower operating costs
- Quicker separation time and lower acid loading can positively impact MFSP


# Dioxolane Upgrading to MEK

#### <u>Objective:</u>

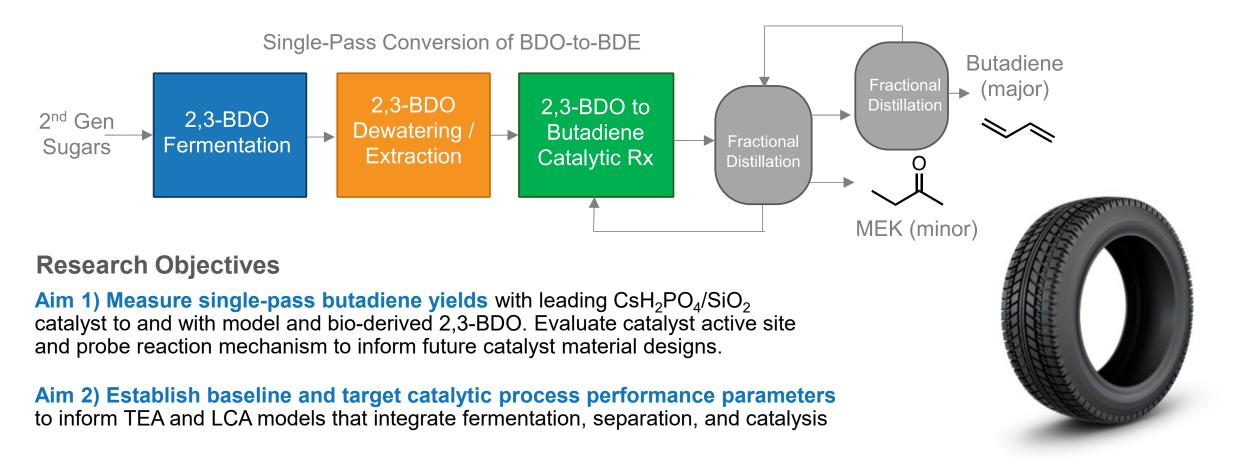
Develop a direct catalytic conversion of dioxolanes to value-added products




Abraham Martinez, Mond F. Guo, and Karthikeyan K. Ramasamy (PNNL)

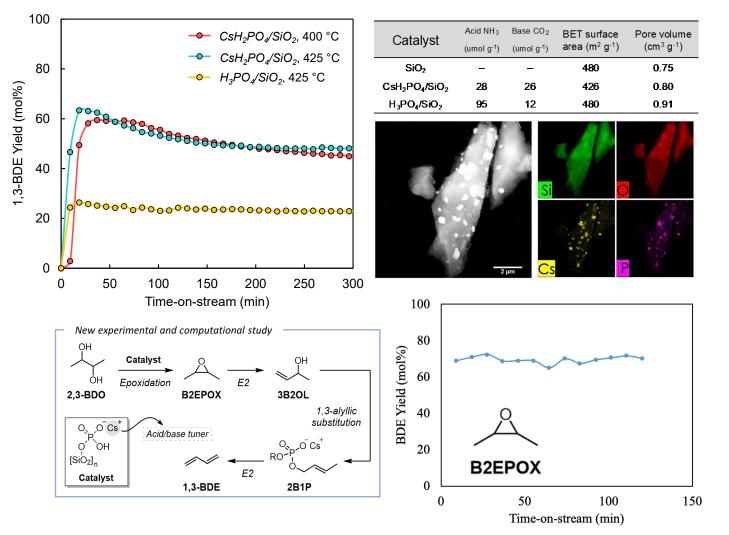


#### <u>Outcome:</u>


- Demonstrated dioxolane upgrading to MEK w/ PNNL; butyraldehyde can be recovered and recycled
- Future work: collaboration with ORNL to evaluate dioxolane to C4+ olefins upgrading pathway



40

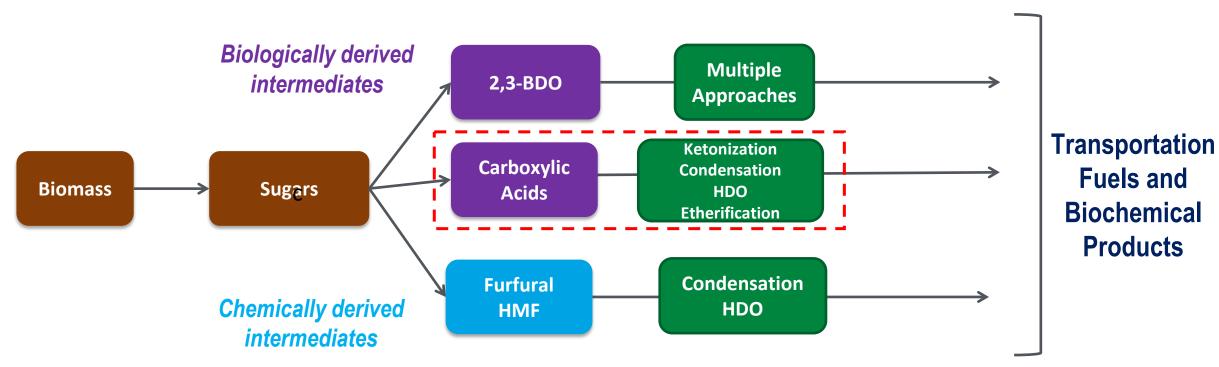

# 2,3-BDO as Precursor for Bio-butadiene

Advance catalytic technology for the single-pass conversion of 2,3-butanediol to butadiene by demonstrating yield, selectivity, and time-on-stream stability that will enable MFSP targets



Advanced understanding of single-pass catalyst active site structure and dual dehydration mechanism

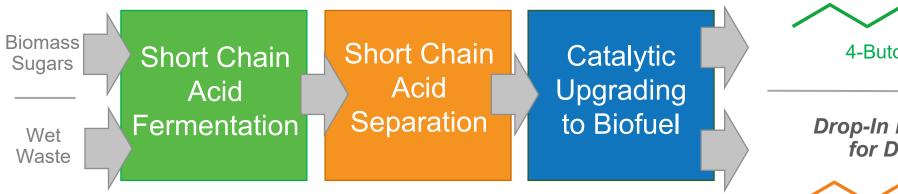
# Single-step conversion of 2,3-BDO to 1,3-BDE



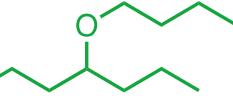

## **Previous work for single-pass BDE**

 Synthesized leading CsH<sub>2</sub>PO<sub>4</sub>/SiO<sub>2</sub> catalyst to demonstrate >50% single-pass yields of butadiene with model and bio-BDO

#### **Outcomes for active site & mechanism**


- Worked with ACSC to confirm catalyst synthesis results in physical collocation of Cs and P by STEM-EDS, as well as chemical interaction of Cs with PO<sub>4</sub> by 31P-NMR
- Collaborated with CCPC to identify epoxide as favorable intermediate, with experimental work with epoxide feed demonstrating comparable butadiene yields to inform future catalyst material active site requirements
- Upcoming TEA work planned to establish baseline and target performance metrics based on upstream separations, single-pass catalyst performance, and catalyst material costs




## Upgrading Approach

# **Short Chain Anaerobic Acids for Biofuels**

C2-C6 acids can be produced from anaerobic fermentation of lignocellulosic sugars and wet waste and converted to biofuels through C-coupling, reduction, and deoxygenation chemistries





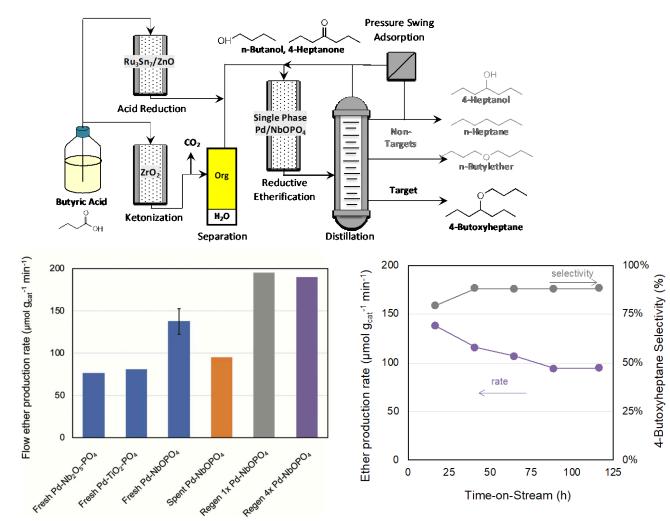


4-Butoxyheptane

Drop-In Hydrocarbons for Diesel & Jet



5-Ethyl-4-Propylnonane


## **Research Objectives**

Aim 1) Improve catalyst process yield and stability to reduce cost for producing 4-butoxyheptane diesel blendstock with single-phase catalyst materials

Aim 2) Reduce feedstock cost and GHG footprint for diesel and jet range hydrocarbons with wet waste-derived acids by advancing vapor phase ketonization with biogenic acid feedstocks

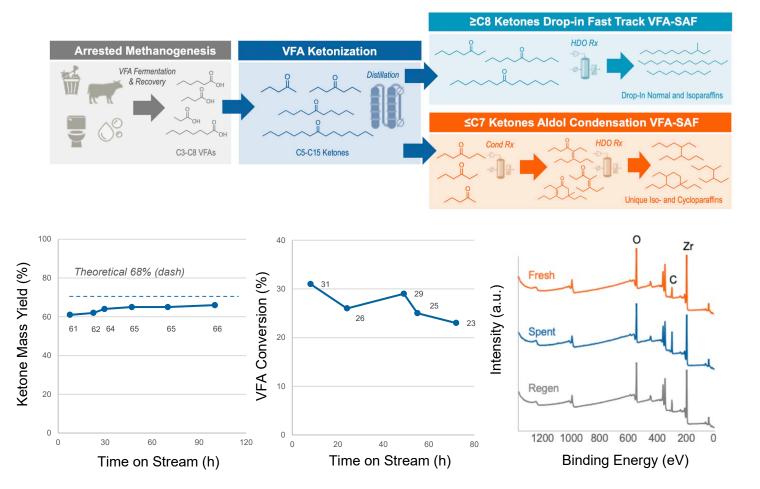
Developed single-phase catalyst to reduce production costs for novel ether diesel bioblendstock

## **Reductive Etherification Pathway for Ethers**



#### **Previous work for 4-butoxyheptane**

 Co-Optima identified 4-BH as promising diesel blendstock with 2x cetane and 1/4 sooting; however, co-mixed Pd/C and Amberlyst resin deactivates with TOS


## **Outcomes for single-phase catalyst**

- Synthesized single-phase catalysts with acidic metal oxides for improved thermal stability and regenerability then Amberlyst
- Identified Pd-NbOPO<sub>4</sub> as most active singlephase catalysts with 87% selectivity and 58% single-pass yield TEA confirmed 14% lower 4-BH minimum fuel selling price
- Demonstrated successful catalyst oxidative regeneration, that also increases Pd size and ether production rate; future work with ACSC and CCPC to assess why with catalyst structure property relationships

Hafenstine et al (2020) Green Chem. 22, 4463-4472

Advanced ketonization of mixed acids derived from wet waste to reduce feedstock costs and GHG footprint

# Ketonization and HDO Pathway for Hydrocarbons



## Previous work for butyric acid

 Demonstrated near theoretical ketone yields with model & bio-butyric acid;
 DOE Biojet validated ASTM jet fuel properties when upgrading mixed acids

## **Outcomes for waste mixed acids**

- Performed ketonization of food wastederived mixed C3-C8 acids for 100 h of TOS to confirm near theoretical yields
- Quantified bio-impurities in feed and partial conversion confirmed break-in of <6 h before steady catalyst performance
- Demonstrated that oxidative regeneration restores catalyst activity after 100 h of TOS;
   ACSC confirmed negligible impurity deposition by XPS and STEM-EDS
- LCA showed 165% lower GHG emissions relative to fossil jet (Opportunities in Biojet) when diverting food waste from landfills

Huo et al (2019) Green Chem. 21, 5813-5827 Huq et al (2021) PNAS. Accepted

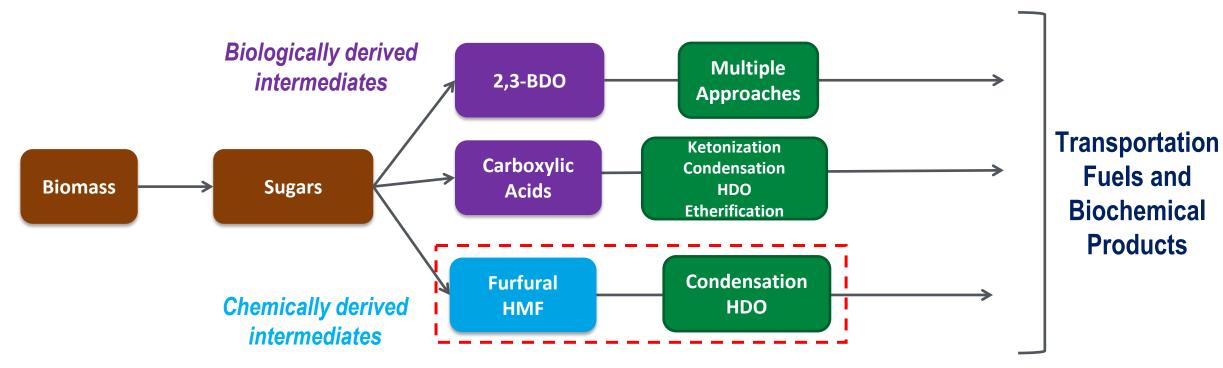
**ChemCatBio** 


Bioenergy Technologies Office

Formed industry partnerships to advance catalytic upgrading of wet waste acids into biojet fuel

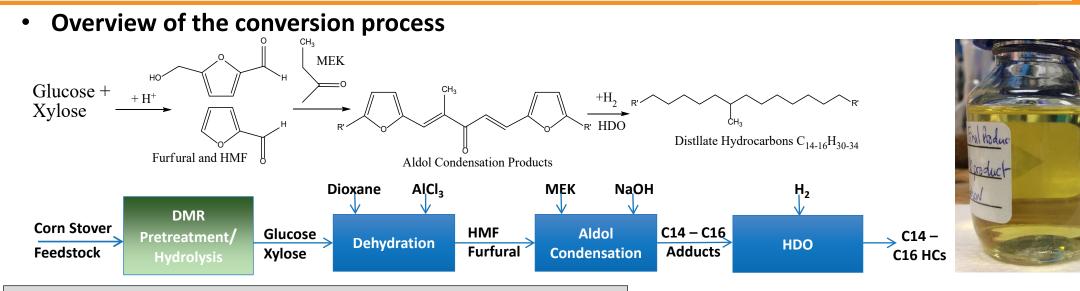


Commercialization **Fund Award** 


Goal to advance next-generation catalysts for producing novel biojet fuel molecules derived from wet waste anaerobic



2020 DOE Funding Opportunity Announcement Award

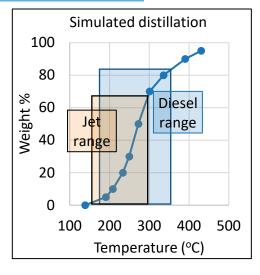

Goal to scale the production of net-zero "Fast Track" sustainable aviation fuel derived from wet waste to 30-gpd for ASTM qualification and world's first flight demonstration

Demonstrated engagement from industry to partner and advance the catalytic upgrading of waste anaerobic acids into sustainable aviation fuel



## Upgrading Approach

48






- Dehydration of sugars to furfurals using catalysts that are a mixture of Lewis and Brønsted acids in an organic/aqueous solvent
- Aldol condensation of furfural mixture with bio-MEK to produce C14-C16 intermediates
- Hydrodeoxygenation of intermediates to isoparaffins using metal catalysts on silica-alumina supports
- Reactors are flow-through tubular and batch reactors
- TRL level is 2 3 with basic bench top research leading to process development research

Hydrocarbon Product Fuel Properties

| Property                        | HMF/Furfural | Typical US                    |
|---------------------------------|--------------|-------------------------------|
|                                 | Upgraded HC  | Diesel                        |
|                                 | Product      |                               |
| Cloud Point<br>(°C)             | -64          | -40                           |
| Density (g/cm <sup>3</sup> )    | 0.828        | 0.83-0.86                     |
| Higher Heating<br>Value (MJ/kg) | 43.6         | 45.6                          |
| Energy Density<br>(MJ/L)        | 36.1         | 38.5                          |
| Cetane<br>Number<br>(AFIDA)     | 61.5         | Min. 40<br>Typically<br>42-45 |



HC product

made from

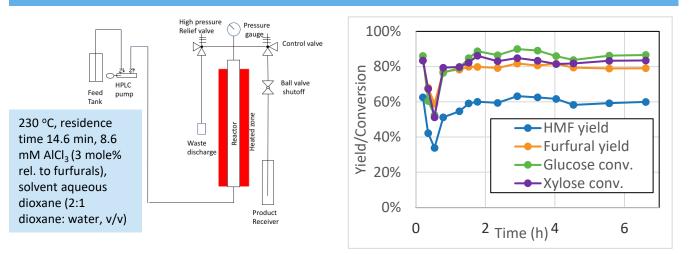
model HMF

and furfural

condensation

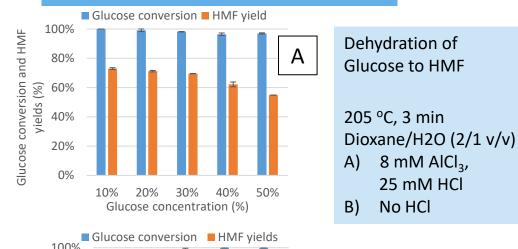
with MEK and

feed after

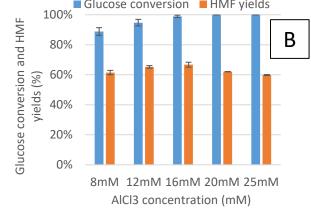

then HDO

aldol

#### Objectives:


- Convert sugars in corn stover hydrolysate into furfural and HMF in a flow reactor
- Increase sugar concentration to decrease solvent amount used.

#### Furfurals Production in Flow Reactor from Corn Stover Hydrolysate

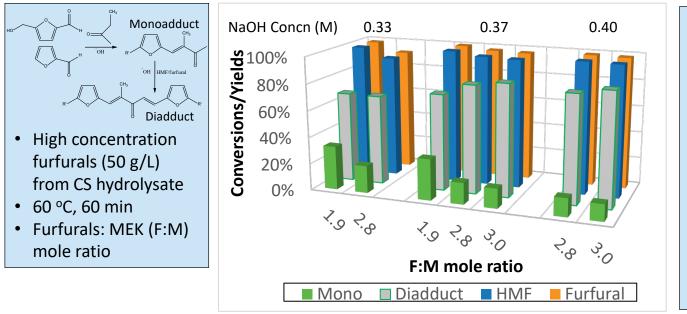



#### Outcomes:

- Stable operation for 6 h with yields and conversions from hydrolysate very similar to those with pure sugars
- Sugar concentration increased to 30% with little drop off in glucose conversion/HMF yield especially after increasing AlCl<sub>3</sub> concentration to 16 mM from 8 mM and eliminating HCl

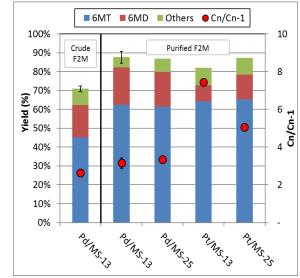


**Increasing Glucose Concentration** 




#### Objectives:

- Produce aldol condensation intermediates from corn stover hydrolysate furfurals
- Develop better understanding of catalyst roles in HDO of aldol condensation intermediates

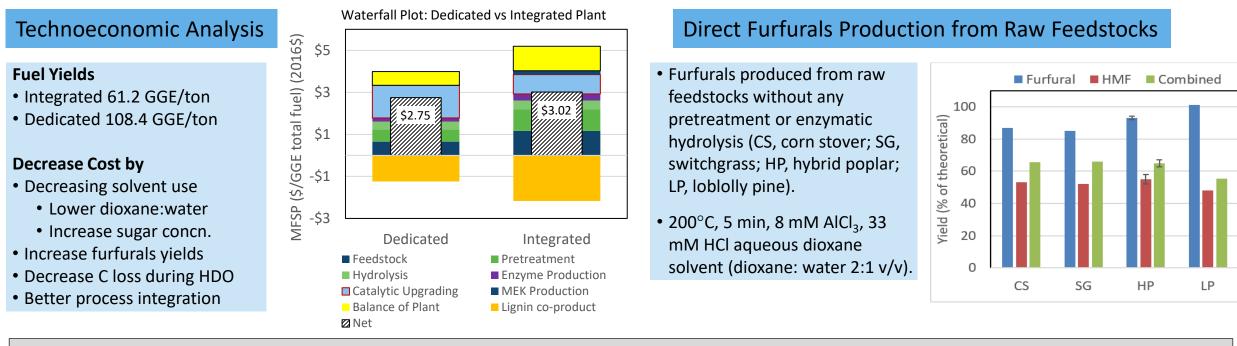

#### Aldol Condensation with Furfurals from Corn Stover Hydrolysate

## Effect of Catalyst on HC Yield



# $\begin{array}{c} H_2 \\ \downarrow^2 \\ C14 - C16 \\ Adducts \end{array} \begin{array}{c} C14 - C16 \\ HDO \end{array} \begin{array}{c} C14 - C16 \\ HCs \end{array}$

- HDO product (82 mol% yield) from mixed furfural/HMF/MEK aldol product with Pd/SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>
- Catalysts with acidic silicaalumina supports (MS-13 & -25) needed to produce HCs.
- More C loss (6MD vs 6MT) on Pd catalysts. Larger metal particles appear to favor decarbonylation




6MT = 6-methyl tridecane; 6MD= 6-methyl dodecane 300 °C, 50 bar  $H_2$ , 2h, ~2 mole% Pd or Pt

#### Outcomes:

- Aldol condensation intermediate made with furfurals from corn stover hydrolysate with predominance of C14-C16 diadducts vs C9-C10 monoadducts at higher F:M mole ratio and higher NaOH concn.
- C loss during HDO possibly due to different HDO mechanisms. Appears to be unrelated to support acidity.

# TEA and Future Work



#### Future Directions

- Reduce the MFSP contribution to the catalytic upgrading process by 25% as compared to the 2020 TEA design case. By:
- Investigate furfurals production directly from raw feedstocks. Possibly eliminating pretreatment/hydrolysis costs
- Improving aldol condensation of MEK with biomass hydrolysate derived furfurals
- Decrease C loss during HDO of furfurals-MEK aldol condensation products.
- In out-years, flow reactor time on stream operation will be extended or number of recycles in batch reactors increased.
- At least 1.0 L of hydrocarbon product for fuel performance testing will be generated by end of the 3-year project cycle.
- TEA will be refined based on conversion results and catalyst cost estimates.

#### **ChemCatBio**

NREL

# Summary

<u>Goal</u>: Improve the **catalytic upgrading of targeted biochemically-derived intermediates** to hydrocarbon fuels and chemical co-products by performing focused and integrated R&D to achieve **25% to 33% cost reduction** in the **catalytic upgrading process area** of an **integrated biochemical conversion process** 

## **Management**

- Integrated task structure
- Regular, structured crosslab interactions
- -Shared/complementary capabilities
- Numerous cross-project interactions
- ChemCatBio enabling projects
- -Biochemical conversion
- –Other BETO consortia
- Early risk identification with structured R&D for risk mitigation

- <u>Approach</u>
- Using common/shared:
- -Process materials
- -Analytical methods
- Reactor systems
- -Fuel assessment
- -TEA tools and approaches
- Critical success factors, challenges, and associated strategies developed
- Go/no-go decision point tied to partial completion of end-ofproject milestone and focusing of future efforts

## <u>Impact</u>

- Project results used to update TEA design reports and annual SOTs
- Numerous impactful journal articles, patents, webinars, and conference presentations
- Industrial engagement activities with several companies
- -Leveraged TCF and FOA projects

## Progress and Outcomes

- 2,3-BDO Upgrading:
- Catalyst/process improvements;
   inhibitor identification/mitigation;
   phase separation/recovery; fuel and coproduct targets
- Carboxylic Acids Upgrading:
- Catalyst/process improvements for reductive etherification for advantaged biodiesel blend stock AND ketonization-HDO for Diesel/jet HCs; mixed acids applications
- Furfurals Upgrading:
- Furfurals production in flow reactors using high concentration sugars; aldol condensation to achieve intermediate diadducts; detailed TEA design case developed

# **Quad Chart**

## Timeline

- Project start date: 10/1/2019
- Project end date: 9/30/2022

|                | FY20    | Active Project                   |
|----------------|---------|----------------------------------|
| DOE<br>Funding | \$2.25M | \$7.75 M (3 years:<br>FY20-FY22) |
|                |         |                                  |
|                |         |                                  |

#### Project Partners' NREL (60%) ORNL (18%) PNNL (11%)

LANL (11%)

## Barriers addressed

- Ct-E: Improving Catalyst Lifetime
- CT-F: Increasing the Yield from Catalytic Processes
- ADO-A: Process Integration

## **Project Goal**

Improve the catalytic upgrading of targeted biochemically-derived intermediates to hydrocarbon fuels and chemical co-products by performing focused and integrated R&D to achieve 25% to 33% cost reduction in the catalytic upgrading process area of an integrated biochemical conversion process enable overall an MFSP of <\$2.5/GGE (biochemical conversion pathway with lignin co-product valorization)

## End of Project Milestone

Demonstrate improvements consistent with a cost reduction from 25% to 33% (depending on pathway) compared to FY19 SOT in catalytic upgrading of biochemical process-derived carboxylic acids, 2,3-BDO, and furfurals intermediates.

#### Funding Mechanism FY19 AOP Merit Review (within ChemCatBio)

# Acknowledgements





| F. Baddour    | R. Katahira |
|---------------|-------------|
| S. Black      | S. Kim      |
| X. Chen       | B. Klein    |
| N. Cleveland  | Y. Kim      |
| D. Conklin    | A. Mittal   |
| R. Davis      | H. Pilath   |
| N. Dowe       | R. Spiller  |
| S. Habas      | J. Stunkel  |
| G. Hafenstine | L. Tao      |
| N. Huq        | M. Tucker   |
| X. Huo        | W. Wang     |
| E. Jennings   |             |

**ChemCatBio** 



R. KatahiraS.S. KimM.S. KleinM.S. KleinM.S. KleinS.G. KimS.A. MittalJ. I.H. PilathT.R. SpillerK.StunkelJ. Z.J. TaoT.M. TuckerE.W. WangC.

| National Laborate |
|-------------------|
| 5. Adhikari       |
| M. Hu             |
| M. Lu             |
| 5. Majumdar       |
| l. Parks          |
| Г. Toops          |
| K. Unocic         |

- J. Zhang
- T. Krause (ANL)
- E. Wegener (ANL)
- C. Yang (ANL)

# U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Bioenergy Technologies Office

Sonia Hammache, Trevor Smith, Nichole Fitzgerald



J. Leal T. Rajale

- T. Semelsberger
- A. Sutton
- R. Wu

Pacific Northwest

M. Affandy M. Flake T. Lemmon M. Lilga M. Swita



# **Additional Slides**





Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

**BIOENERGY TECHNOLOGIES OFFICE** 

# Responses to Previous Reviewers' Comments

- This project summarizes a broad effort in moving a family of technologies for fuel and co-product production toward commercial development and is driven by TEA-informed decisions that steer the work toward \$/GGE targets. The suite of technologies seem very appropriate to the types of feedstocks available. While TEA is helpful for assessing progress toward \$/GGE targets, the impact of specific catalytic technologies may be somewhat obscured. Such heavy reliance on co-products may be of concern: it isn't clear if the technologies have been demonstrated yet, and it isn't clear if, e.g., lignin co-product markets are commensurate in size with fuel markets. It would be helpful to make the case for producing fuels + co-products vs fuels alone vs co-products alone.
  - <u>Response</u>: We appreciate the comment on producing value added chemicals to enable biofuels production. We are aware of the market volume challenges for specific co-products. Envisioning the future bioeconomy, there will many co-products via sugars, along with fuel production. The initial MFSP and importance of the lignin conversion process has been determined and presented in Biochemical Conversion session presentations. We will also include more TEA scenarios, including fuels only, co-products only, more than one co-products, etc. For 2,3-BDO upgrading, we envision a flexible process where 2,3-BDO could be converted to either fuels and/or value added chemicals (e.g. butadiene, 1-butanol, isobutanol).

# Responses to Previous Reviewers' Comments

- This is a quintessential CCB project; taking in biochemically-derived intermediates and further converting them with chemical catalysis all under the watchful eyes of the TEA team. The bar appears to be set high in all the tasks and the overall impact of the project will be commensurately high at sunset later this year. What's not working: while TEA has been used to indicate that each of the main four pathways has potential to reach the goal of <\$3/gge, the actual current value of the \$/gge has not been presented. This would provide valuable information.
  - <u>Response</u>: The TEA was conducted within the first 6 months of effort for some upgrading pathways. Significant progress has been made by each catalytic upgrading route within the last 18 months and the TEA will be updated in Q4 FY19 and will further inform opportunities for cost reduction. (*Added note*: The TEA results from the FY19 SOT cases for each route were used in developing the end-of-project milestone metrics for the new 3-year AOP cycle for the CUBI project (FY20-FY22).

# Responses to Previous Reviewers' Comments

- Large effort involving many labs and 4 different tasks around a very important topic and many different
  processes. Very comprehensive work involving many skills and resources. One of the backbone of the
  consortium. It would be beneficial to have a clear definition of the range of products that are being
  targeted and the state-of-the-art in many of these processes. The overall success of the project is
  dependent on the success of the lignin valorization projects. Routes are being evaluated with
  comprehensive TEA. Need to relate costs not only to catalyst performance but also other factors, such as
  solvent selection and downstream separation process. The relevance to BETO and potential for
  technology development is clear.
  - <u>Response</u>: We thank the reviewers for their positive comments. We appreciate concerns regarding the cost dependency on the production of lignin-derived co-products and will show the cost of producing the sugar derived products with and without lignin valorization. TEA analysis will continue to be an important guide to research direction and will include all related costs (solvent selection, downstream processing, catalyst cost). For BDO upgrading route via 2-step process, the co-products are MEK, 1-butanol and isobutanol. The C5 isoolefins product are used in the synthesis of TAME, a fuel additive. For state-of-the-art for BDO upgrading to fuels, very limited data is available. KSU has demonstrated the conversion of 2,3-BDO to butenes but their work is limited to zeolite catalysts, operating with pure 2,3-BDO and conducted under H2. In addition to zeolites, we have investigated mixed oxides catalysts (e.g. AIPO4, AIZrLa, ZnZrOx) for the BDO to olefins upgrading and demonstrated that using mixed oxides catalysts leads to the formation of a C2-C6 iso-olefins mixture with up to 75% C5 iso-olefins. In addition, we demonstrated that our 2-step process for 2,3-BDO upgrading to iso-olefins fuel precursors can operate without H2.

#### **Publications**

- Vorotnikov et al. (2019). Inverse RuSn bimetallic catalyst for selective carboxylic acid reduction. ACS Catalysis. 9, 11350-11359
- Huo et al. (2019). Tailoring diesel bioblendstock from integrated catalytic upgrading of carboxylic acids. Green Chemistry. 21, 5813-5827
- Dagle, V., Dagle, R., Kovarik, L., Baddour, F., Habas, S., and Elander R. Single-step conversion of Methyl Ethyl Ketone to Olefins over ZnxZryOz catalyst in water. ChemCatChem 2019- front cover article. DOI.org/10.1002/cctc.201900292
- Mittal, Ashutosh; Pilath, Heidi; Parent, Yves; Chatterjee, Siddharth; Donohoe, Bryon; Yarbrough, John; Black, Stuart; Himmel, Michael; Nimlos, Mark; Johnson, David. Chemical and structural effects on the rate of xylan hydrolysis during dilute acid pretreatment of poplar wood, ACS Sustainable Chem. Eng., 2019, 7 (5), 4842–4850.
- X. Yang, R. W. Jenkins, J. H. Leal, C. M. Moore, E. J. Judge, T. A. Semelsberger, A. D. Sutton, "Hydrodeoxygenation (HDO) of Biomass Derived Ketones Using Supported Transition Metals in a Continuous Reactor" ACS Sustainable Chem. Eng., 2019, 7, 17, 14521.
- C. F. Ryan, C. M. Moore, J. H. Leal, T. A. Semelsberger, J. K. Banh, J. Zhu, C. S. McEnally, L. D. Pfefferle, A. D. Sutton (2019). Synthesis of Aviation Fuel from Bio-Derived Isophorone. Sustainable Energy & Fuels. 4, 1088-1092.
- Hafenstine et al. (2020). Single-phase catalysis for reductive etherification of diesel bioblendstock. Green Chemistry. 22, 4463-4472
- Mittal, A., Pilath, H.M. and Johnson, D.K., 2020. Direct conversion of biomass carbohydrates to platform chemicals: 5-hydroxymethylfurfural (HMF) and furfural. Energy & Fuels, 34(3), 3284-3293
- Shiba P. Adhikari, Junyan Zhang, Qianying Guo, Kinga A. Unocic, Ling Tao, Zhenglong Li. 'A Hybrid Pathway to Biojet Fuel via 2,3-Butanediol.' Sustainable Energy & Fuels. 2020, 4, 3904-3914. (Back journal cover highlight)
- Yeonjoon Kim, Ashutosh Mittal, Heidi Pilath, Brian Etz, David J. Robichaud, David K. Johnson, and Seonah Kim. Prediction of Hydroxymethylfurfural Yield in Glucose Conversion through Investigation of Lewis Acid and Organic Solvent Effects. ACS Catalysis 2020, 10, 14707–14721. https://dx.doi.org/10.1021/acscatal.0c04245.
- Huo et al. (2021). Towards net-zero sustainable aviation fuel with wet waste-derived volatile fatty acids. PNAS. Accepted.

#### **Presentations**

- V. Vorotnikov, T.R. Eaton, A.E. Settle, K. Orton, E.C. Wegener, C. Yang, J.T. Miller, G.T. Beckham, D.R. Vardon. Inverse bimetallic catalysts for selective reduction of propionic acid. Spring 2019 American Chemical Society Meeting, Orlando, FL. April 2019
- Z. Li, J. Zhang, S. Adhikari, K. Unocic. "Catalytic Upgrading of Biomass Derived 2,3-Butanediol to Biofuels and Chemicals--2D Pillared Zeolite to Mitigate Coking" ACS National Meeting, Orlando, FL, April 4, 2019.
- S Adhikari, J Zhang, Z Li, "Catalytic Upgrading of Biomass Derived 2,3-Butanediol to Biofuels and Chemicals" Presented by Zhenglong Li ACS National Meeting, Orlando, FL, April 2019 (Invited)
- Johnson, David. Hydrodeoxygenation of biomass-derived intermediates to paraffins for blending into jet or diesel fuels. Presentation at the ACS Spring 2019 National Meeting Orlando, FL.
- D.R. Vardon, Z. Li, V. Dagle. Technology options for catalytically upgrading biochemically derived 2,3-Butanediol from lignocellulosic biomass feedstocks to advanced biofuels and chemical products. ChemCatBio Webinar, April 2019.
- Mittal, Ashutosh; Pilath, Heidi; Johnson, David. Direct conversion of biomass carbohydrates to platform chemicals: 5-HMF and furfural. Poster presented at the 41st Symposium on Biotechnology for Fuels and Chemicals in Seattle, WA.
- Wang, Wei; Mittal, Ashutosh; Pilath, Heidi; Johnson David. Simultaneous upgrading biomass-derived sugars to HMF/furfural via enzymatically isomerized ketose intermediates. Poster presented at the 41st Symposium on Biotechnology for Fuels and Chemicals in Seattle, WA.
- Johnson, David. Production of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde from biomass hydrolysates as intermediates in the production of hydrocarbons from biomass sugars. Poster presented at the 41st Symposium on Biotechnology for Fuels and Chemicals in Seattle, WA.
- X. Huo, N.A. Huq, J. Stunkel, D.R. Conklin, N.S. Cleveland, S.M. Tifft, A.K. Starace, T.J. Strathmann, D.R. Vardon. Integrated catalytic upgrading of butyric acid to hydrocarbon diesel blendstock. North American Catalysis Society Meeting, Chicago, IL. June 2019.
- V. Vorotnikov, T.R. Eaton, A.E. Settle, K. Orton, E.C. Wegener, C. Yang, J.T. Miller, G.T. Beckham, D.R. Vardon. Inverse bimetallic catalysts: Active phases for selective reduction of carboxylic acids. North American Catalysis Society Meeting, Chicago, IL. June 2019.

#### Presentations (continued)

- J.V. A. Requena, Y. Guan, X. Huo, J. Stunkel, S. Kim, D.R. Vardon, R.S. Paton. Mechanistic study of the production of 1,3-butadiene from bio-2,3butanediol using supported H<sub>3</sub>PO<sub>4</sub> derivatives. North American Catalysis Society Meeting, Chicago, IL. June 2019.
- S Adhikari, J Zhang, Z Li, "Jet Fuel Production from Bio-derived 2,3-Butanediol using 2D Pillared Zeolite" Presented by Shiba Adhikari NAM26, Chicago, IL, June 2019
- G.R. Hafenstine, N.A. Huq, X. Huo, J. Stunkel, S.M. Tifft, D.R. Vardon. Conversion, stability, and selectivity improvements through catalyst development for the reductive etherification reaction and implications for bioblendstock production from waste biomass. Fall 2019 American Chemical Society Meeting, San Diego, CA. August 2019.
- D.R. Vardon, X. Huo, V. Vorotnikov, M. Zhou, D. Conklin, A. York, Z. Li, K. Page, R.M. Richards, R.S. Assary. Methyl Ketone Condensation over Tailored Metal Oxides for Biofuel Precursor Production. Fall 2019 American Chemical Society Meeting, San Diego, CA. August 2019.
- J.V.A. Requena, Y. Guan, X. Huo, J. Stunkel, S. Kim, D.R. Vardon, R.S. Paton. Catalytic mechanisms of butanediol conversion by metal phosphates. Fall 2019 American Chemical Society Meeting, San Diego, CA. August 2019.
- J. V.A. Requena, S. Kim, Y. Guan, X. Huo, J. Stunkel, S. Kim, D.R. Vardon, R.S. Paton. Experimental and computational studies of the production of 1,3butadiene from bio-2,3-butanediol using SiO<sub>2</sub>-supported H<sub>3</sub>PO<sub>4</sub> derivatives. Fall 2019 American Chemical Society Meeting, San Diego, CA. August 2019.
- G.R. Hafenstine, N.A. Huq, D.R. Conklin, M.R. Wiatrowski, X. Huo, D.R. Vardon. Waste-to-energy process intensification for reductive etherification production of oxygenated diesel blendstocks. 24th Annual Green Chemistry and Engineering Conference. Virtual. June 2020.

#### Patents

- Vardon et al. (2019) Solid catalysts for producing alcohols and methods of the same. U.S. Patent No. 10,486,141. Issued Nov. 26, 2019.
- Zhenglong Li. (2019) Catalysts for conversion of 2,3-butanediol-containing fermentation mixture to hydrocarbons. U.S. Patent No. 10,300,474 B2. Issued May 28, 2019.
- Vardon et al. (2020) Bioderived fuels and methods of making the same. U.S. non-provisional application No. 15/930,205 filed on May 12, 2020.