

ChemCatBio DFA

Catalyst Development for Selective Electrochemical Reduction of CO₂ to High-value Chemical Precursors with Opus 12

WBS # 2.5.4.707 U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2019 Project Peer Review

Frederick Baddour – NREL

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE

Timeline

- Project Start: January 1, 2018
- Project End: January 1, 2020
- Percent Complete: 50%

	Total Costs Pre FY17	FY17 Costs	FY18 Costs	Total Planned Funding (FY19–FY21)		
DOE Funded	\$0	\$0	\$87k	\$163k		
Project Cost Share	N/A	N/A	\$40k	\$67k		

Partners (FY19–FY20):

NREL: \$250k Opus 12: \$107k (30%)

Barriers addressed

<u>**Ot-B.</u>** Converting CO₂ waste streams (expenses) into desirable products (revenue) <u>**Ct-G.**</u> Decreasing the Time and cost to developing novel industrially relevant catalysts</u>

Objective

The goal of this project is to gain a fundamental understanding of the impact of metal nanoparticle and carbon support physical properties on electrochemical CO_2 reduction performance. This insight will enable the development of customizable reactors that can convert CO_2 with high selectivity to CO, CH_4 , or C_{2+} products for the specific needs of customer segments within the biofuels and bio-products industry.

End of Project Goal

The end of project goal is to <u>demonstrate a 20%</u> <u>reduction in overpotential and 20% higher partial</u> <u>current</u> to carbon-containing products compared to baseline MEAs with commercially available catalysts.

Integrated and collaborative portfolio of catalytic technologies and enabling capabilities

Catalytic Technologies	Enabling Capabilities	Industry Partnerships
Catalytic Upgrading of	Advanced Catalyst Synthesis	(Directed Funding)
Biochemical Intermediates	and Characterization	Gevo (NREL)
NRLL, FINIL, ORINL, LAINL, NRLL)	(INICE, ANE, ONNE, SNE)	ALD Nano/JM (NREL)
Latalytic Upgrading of Indirect	Development	Vertimass (ORNL)
(NREL, PNNL, ORNL)	(NREL, PNNL)	Opus 12 (NREL)
Catalytic East Dyrolysis	Consortium for Computational	Visolis (PNNL)
(NREL, PNNL)	Physics and Chemistry	Lanzatech (PNNL) - Fuel
	(URNL, NREL, PNNL, ANL, NETL)	Gevo (LANL)
Electrocatalytic and hermocatalytic CO ₂ Utilization	for Biomass Conversion	Lanzatech (PNNL) - TPA
(NREL, ORNL*)	(PNNL)	Sironix (LANL)
FY19 Seed Project	Cross-Cutting Support	
Chem	CatBio Lead Team Support (NREL)	

Chemicalbio Dalanub (INREL)

1 – Relevance: The Opportunity

CO₂ conversion to fuels/chemicals can significantly increase revenue and enhance profitability of biorefining efforts

1 – Relevance: Revenue from Waste

The Challenge: A cost effective, modular CO₂ conversion technology for globally dispersed waste streams

Fuels/Chemicals Industry

Opus 12's platform technology for CO₂ conversion can increase profitability across the bioenergy sector

1 – Relevance: The Opus 12 Platform

Core Technology

Uniquely formulated membrane-electrode assembly (MEA) converts a water electrolyzer stack into a CO₂ electrolyzer

A clear path to large scale deployment

ChemCatBio

Bioenergy Technologies Office | 6

1 – Challenges

Transitioning from laboratory-scale MEAs to commercial stacks requires reproducible production of MEAs with suitable **lifetime and performance**

- Challenges to overcome:
- More uniform smaller active catalyst metal NPs
- Decreased hydrophilicity of conductive catalyst support
- Increased catalyst loading
- Determination of best practices for MEA diagnostics
- Outcomes:
- Decreased NP size and better uniformity *increases performance and reduces cost*
- Better H₂O management *reduces flooding and enhances diffusion to electrode*
- Increased performance at same MEA size
- MEA diagnostics provide feedback on the preparation of a *commercially* viable and reproducible ____ ορυs 12 NREL

Partnership with NREL and ChemCatBio offers a unique set of expertise to address these research challenges

1 – Approach: The Overarching Challenge

Limitations of commercially available catalysts requires the synthesis of advanced catalytic materials

Fundamental Research Challenges

New Cathode Catalyst Development

- Novel materials synthesis
- Characterization (e.g. TEM, SEM, XRD, EA)
- Supporting methodologies
- Surface treatment
 methodologies
- Scalable-synthesis
- Advanced diagnostics

Advanced materials, Fundamental understanding

Performance Feedback Processing Requirements

Applied Research and Industrial Deployment

New Cathode Catalyst Development Requirements

- Ink preparation
- MEA incorporation strategies
- Performance evaluation
- Lifetime evaluation (e.g. TEM, SEM, XRD, EA)

Unique synthesis and characterization capabilities within ChemCatBio can accelerate commercial deployment by partnering to develop CO₂ conversion catalysts

1 – Approach: Integration from Lab to Stack

Membrane Diagnostics (NREL)

FY 2018/2019

Quarter 2

Establish a synthetic platform for ECO₂R catalysts (NREL)

Quarter 3

Dispersion method development (NREL)

Quarter 4

Assembly of 1st generation MEAs (Opus 12)

Quarter 1 Performance evaluation of 1st generation MEAs

(Opus 12)

Successfully **developed synthetic methods** to prepare quantities of nanoparticle with physical properties specified by Opus 12 in quantities suitable to fabricate >3 25cm² MEAs

Successfully *developed dispersion methods* to prepare supported catalysts incorporating previously synthesized nanoparticles

- 1.5-2g batches of >10 wt% catalysts were prepared
- Multiple surface treatments and stabilization methods developed

A baseline MEA was prepared based using the catalysts synthesized using the methods developed in Q2

1st generation MEAs using NREL developed catalysts exceeded 10% overpotential reduction and +10% current density to products

Developed effective supporting methodologies

Synthesis translated to large-scale (>3g)

FY18Q2-Q3

Challenge Addressed:

More uniform smaller active catalyst metal NPs Increased active catalyst loading

Successfully developed synthetic methods to prepare nanoparticle catalysts at suitable scales for performance evaluation

2 – Technical Accomplishments: Catalyst Development

Catalysts successfully incorporated into MEAs

	Percent change compared to baseline commercial catalyst @160mA/cm ²					
Catalyst Description	Prod. Current Efficiency (%)	Prod. Current Efficiency Change (%/hr)	Voltage (V)	Voltage Decay (mV/hr)		
Commercial Baseline	_	_	_	_		
Cat 1	-1.4%	450%	4%	-1080%		
Cat 2 (oxidized)	1.7%	50%	-4%	120%		
Cat 3 (oxidized)	1.5%	200%	-5%	420%		

Cat 2 demonstrated s a nearly 2-fold (190%) improvement in current efficiency per USD

3 – Future Work: Roadmap FY19/20

Guido Bender

FY 19 Quarter 2

- PEM diagnostics to *optimize reactor architecture* (e.g. in-situ pinhole failure detection)
- Synthesis 2nd generation NP catalysts

FY 19 Quarter 3

MEA assembly and performance evaluation

FY 19 Quarter 4

Conductive support modification and 2nd generation MEA diagnostics

FY20 Quarter 1

MEA assembly and performance evaluation with 2nd NP catalysts and surface modified supports

Summary

Industry Challenge: More uniform smaller active catalyst metal NPs

Developed synthetic methods to prepare quantities of nanoparticle with physical properties specified by Opus 12 in quantities suitable to fabricate >3 25cm² MEAs

Industry Challenge: Increase active catalyst loading

Developed effective supporting methodology to retain particle size and morphology at increased loadings

"This partnership has enabled us to *connect with expertise and capabilities* not readily available outside of the national laboratory complex. *These capabilities have allowed us to evaluate a greater diversity of catalysts for CO*₂ *conversion applications.*" – Opus 12

Acknowledgements

ΟρUS 12 **CONREL**

ChemCatBio

Chemical Catalysis for Bioenergy

<u>NREL</u>

Susan Habas Guido Bender Bryan Pivovar Kenneth Neyerlin Courtney Downes

Energy Materials Network

U.S. Department of Energy

<u>Opus 12</u>

Kendra Kuhl Ziyang Huo Sichao Ma

This research was supported by the DOE Bioenergy Technology Office under Contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory

This work was performed in collaboration with the Chemical Catalysis for Bioenergy Consortium (ChemCatBio, CCB), a member of the Energy Materials Network (EMN)