

DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review

CCB DFAs: Low Pressure Hydrogenolysis Catalysts for Bioproduct Upgrading with Visolis

6th March 2019 Catalytic Upgrading

Karthikeyan K. Ramasamy Pacific Northwest National Laboratory

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE

ChemCatBio Foundation

Integrated and collaborative portfolio of catalytic technologies

and enabling capabilities

Enabling Capabilities Catalytic Technologies Industry Partnerships **Advanced Catalyst Synthesis** (Directed Funding) **Catalytic Upgrading of Biochemical Intermediates** and Characterization Gevo (NREL) (NREL, ANL, ORNL, SNL) (NREL, PNNL, ORNL, LANL, NREL*) ALD Nano/JM (NREL) **Catalytic Upgrading of Indirect Catalyst Cost Model** Vertimass (ORNL) **Development Liquefaction Intermediates** (NREL, PNNL, ORNL) (NREL, PNNL) Opus12(NREL) Visolis (PNNL) **Consortium for Computational Catalytic Fast Pyrolysis Physics and Chemistry** Lanzatech (PNNL) - Fuel (NREL, PNNL) (ORNL, NREL, PNNL, ANL, NETL) Gevo (LANL) **Catalyst Deactivation Mitigation Electrocatalytic and** Lanzatech (PNNL) - TPA for Biomass Conversion Thermocatalytic CO₂ Utilization Sironix (LANL) (NREL, ORNL*) (PNNL) *FY19 Seed Project **Cross-Cutting Support**

ChemCatBio Lead Team Support (NREL)

ChemCatBio DataHUB (NREL)

ChemCatBio

2

Quad Chart Overview

Timeline

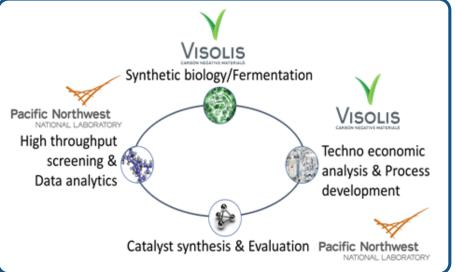
- Project start date: 01/15/2018
- Project end date: 12/31/2019
- Percent complete: 40%

	Total Costs Pre FY17	FY 17 Costs	FY 18 Costs	Total Planned Funding (FY 19- Project End Date)
DOE Funded			300K	225K
Project Cost Share			128.6K	96.4K

Barriers Addressed

- Ct-F. Increasing the Yield from Catalytic Processes
- Ct-G. Decreasing the Time and Cost to Develop Novel Industrially Relevant Catalysts

Objective


Develop a low-pressure and water-tolerant hydrogenolysis catalyst to convert the fermentation derived C5 oxygenate to a high-value monomer.

End of Project Goal

Demonstrate stable catalyst with \ge 80% selectivity to desired product at pressure under 4MPa and complete the techno-economic analysis.

Approach

- Visolis demonstrated demo scale for the production of bio-intermediate (C5 oxygenate) with low projected costs at commercial scale and identified a thermo-catalytic pathway to convert the bio-intermediate to high-value monomer.
 - Preliminary work by Visolis and PNNL demonstrated the conversion of bio-intermediate via hydrogenolysis with a selectivity ~70% at 200°C and 13Mpa.
 - The commercial catalyst identified in the preliminary work requires high hydrogen pressure and demonstrated low catalyst stability.
 - Low-pressure and stable hydrogenolysis catalyst improve the commercial case with major capital cost savings and decreased operating costs.
- Synthetic biology/ fermentation is Visolis core competency.
- PNNL has the demonstrated technical capability in developing hydrogenolysis catalyst and unique catalyst development tools.

Deepak Dugar (President, Visolis Inc.): PNNL's involvement will accelerate the low pressure hydrogenolysis catalyst discovery and the process development cycle.

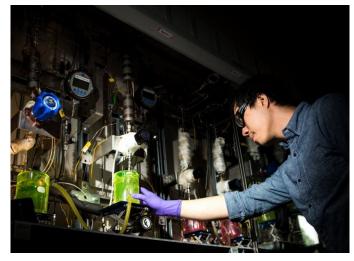
Approach (Technical)

Testing in High Throughput Analysis

To identify catalyst that can reach >50% selectivity to monomer at \leq 13Mpa.

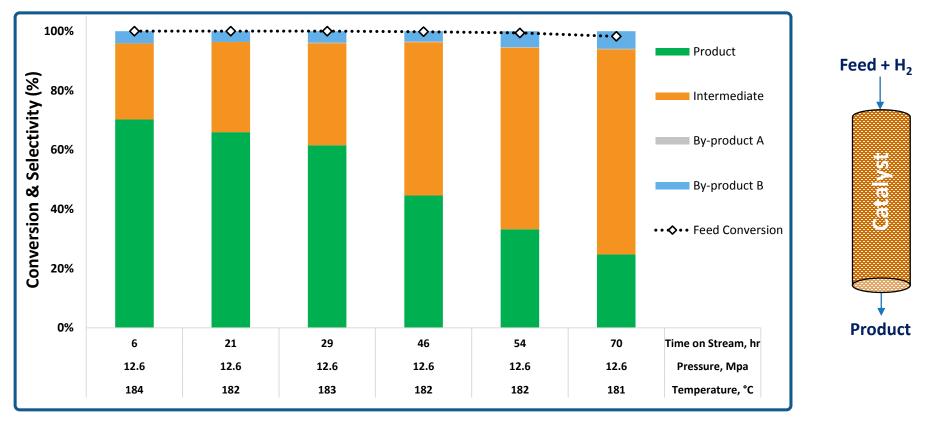
Process Optimization in Flow Reactor

Optimize temperature and residence time as a function of system pressure to identify catalysts that can reach at least 80% selectivity.

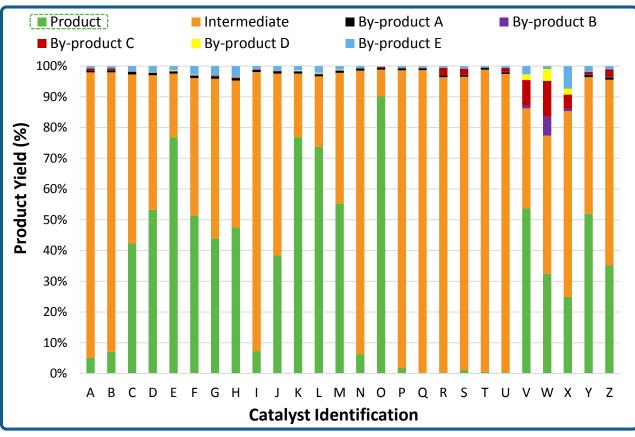

Catalyst Stability and Lifetime Testing

Demonstrate 100-hour time on stream experiment on the selected catalyst and provide catalyst to Visolis for scaled-up testing.

Techno-Economic Analysis and Pilot


Demonstrate a stable hydrogenolysis catalyst at ≥80% selectivity ≤4MPa and complete the technoeconomic analysis.

Technical Accomplishments

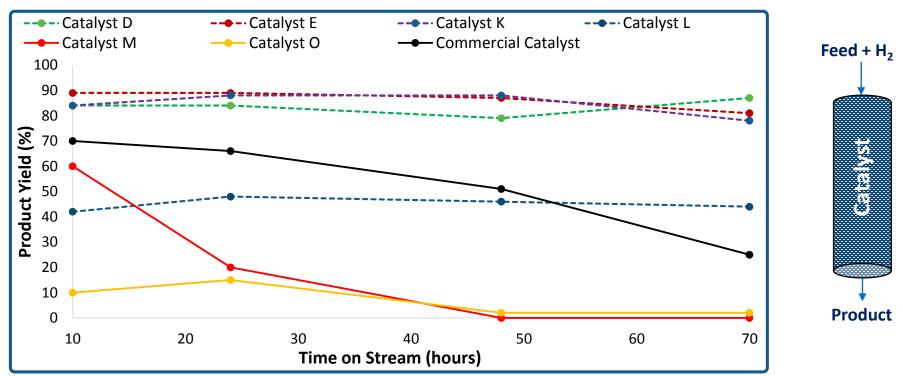

Preliminary Test on Commercial Catalyst

- Operated at high hydrogen pressure (~12.5 Mpa) and temperature (200°C).
- Poor catalyst stability leads to ~20% desired product selectivity within 70 hours of time on stream.

Technical Accomplishments

High Throughput Catalyst Screening

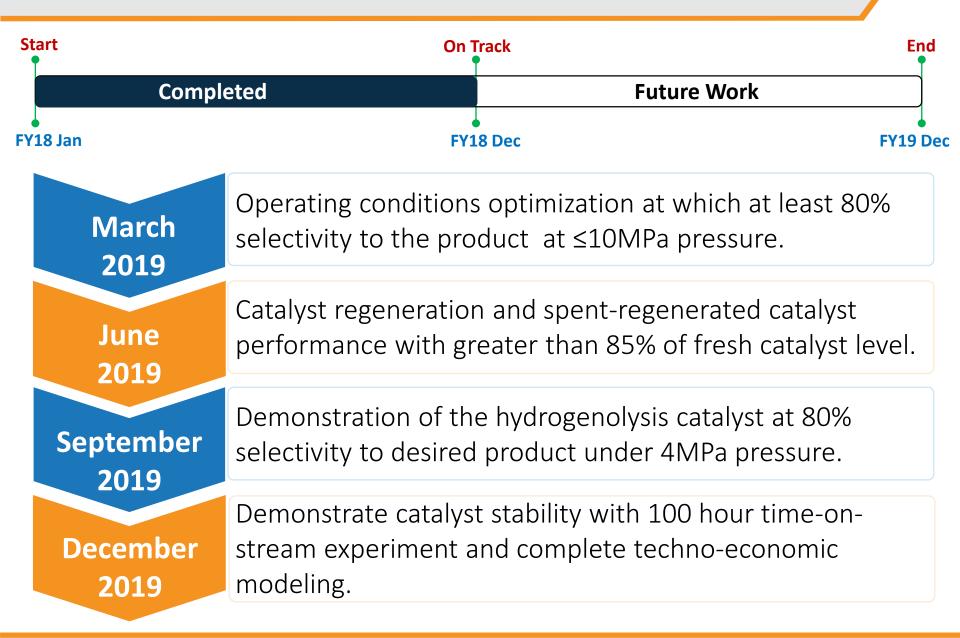
Catalyst Synthesis


Catalyst Testing

- High throughput experiments (>100 catalysts tested) used to select the catalyst compositions and supports for further testing in plug flow reactor.
- Supports with neutral (mild acidic or basic) properties performed better.

Technical Accomplishments

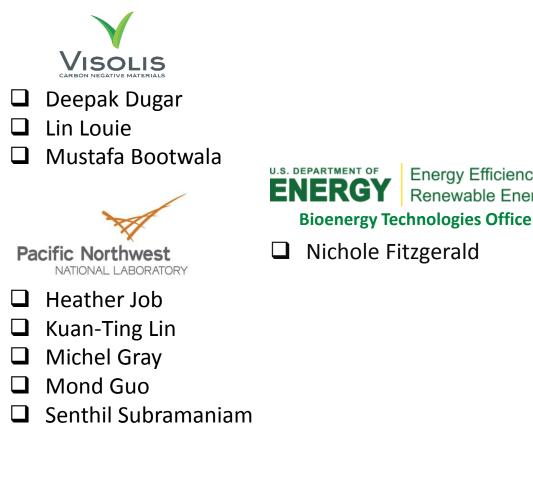
Catalyst Stability Flow Experiment Results


Flow experiments at 150°C (commercial catalyst at 180°C), 12.6 Mpa, H_2 to feed ratio of 15.5 and weight hourly space velocity of 0.8 hr⁻¹

- Catalysts that deactivate faster tends to produce carboxylic acid intermediate at higher concentration.
 - We hypothesize these acids strongly adsorb on the active sites and deactivate the catalyst.
- Catalysts shown in dotted line are selected for the further study.

ChemCatBio

8


Future Work

Summary

Overview	• Low-pressure and water-tolerant hydrogenolysis catalyst to convert the fermentation derived C5 oxygenate to a high-value monomer.	
Approach	• High-throughput experiments to screen the potential catalyst and process conditions. Further optimize the selected catalyst to develop the low-pressure hydrogenolysis catalyst.	
Technical Progress	 Reduced the pressure requirement from 13Mpa to 7Mpa and demonstrated a stable catalyst beyond 50 hours on stream with product yield around 90%. 	
Relevance	• Stable catalyst that can operate at low pressure to selectively upgrade biological intermediates and approach to bridge the biochemical conversion feedstocks with catalytic upgrading.	
Future Work	• Develop the catalyst that can operate under 4Mpa and demonstrate the catalyst stability beyond 100 hours time-on-stream. Complete the techno economic analysis.	

Acknowledgements

This research was supported by the DOE Bioenergy **Technology** Office

This work was performed in collaboration with the Chemical Catalysis for **Bioenergy Consortium** (ChemCatBio, CCB), a member of the Energy Materials Network (EMN)

Energy Efficiency &

Renewable Energy

Office of **FN** BIOENERGY TECHNOLOGIES OFFICE

Thank you!

ChemCatBio Team

ENERGY Bioenergy Technologies Office