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08 Resources

* Website: chemcatbio.org
Tools and capabilities
Publications

Webinars

Interactive technology briefs

* Tools:
- Catalyst Property Database
- CatCost

* Newsletter: The Accelerator
- Subscribe

ChemCatBio

' ‘ CL About v Capabilities ¥ Data Resources ¥ News v WorkWithUs Contact Us
Chemical Catalysis for Bioenergy

ChemCatBio Impact

Biomass resources in the United

States could be harnessed to produce Total Citations:
up to 50 billion gallons of biofuel each e
year. That's enough to fuel all domestic

and international air travel.

ChemCatBio helps decarbonize our economy by accelerating the
development of catalytic technologies that convert biomass and
waste resources into renewable fuels and chemicals.

Bioenergy Technologies Office |
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https://chemcatbio.org/
https://cpd.chemcatbio.org/
https://catcost.chemcatbio.org/
https://www.chemcatbio.org/news-archive.html
https://public.govdelivery.com/accounts/USEERE/signup/21906

OO Housekeeping

 Attendees will be in listen-only mode ¢ Use the Q&A panel to ask questions

* Audio connection options: e Technical difficulties? Contact Erik Ringle
— Computer audio through the chat section, lower right of your

— Dial in through your phone (best >creen

connection) * Recording will be available at:

. Automated closed captions are https://www.chemcatbio.org/webinars.html

available

NOTICE: This webinar, including all audio and images of participants and presentation materials, may be recorded, saved,
edited, distributed, used internally, posted on DOE’s website, or otherwise made publicly available. If you continue to
access this webinar and provide such audio or image content, you consent to such use by or on behalf of DOE and the
Government for Government purposes and acknowledge that you will not inspect or approve, or be compensated for,
such use.

Chem Bio Bioenergy Technologies Office |



()~ Today’'s Speaker

Rajeev Surendran Assary

Argonne National Laboratory
assary@anl.gov

Chem Bio Bioenergy Technologies Office | 4
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ChemCatBio

Chemical Catalysis for Bioenergy

A multi-scale problem ... A multi-lab solution

Al for Catalysis

Rajeev S. Assary, PhD
Materials Science Division, Argonne National Laboratory
ChemCatBio Webinar

assary@anl.gov | | @rsassary

R Office of ENERGY EFFICIENCY
ENERGY | & ReENEWABLE ENERGY
BIOENERGY TECHNOLOGIES OFFICE
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08 Research Interests: Energy Storage Conversion

« Beyond-Li ion Energy Storage | | Decarbonization

Autonomous Clean Energy and

Materials Discovery ~ Sustainability

. Ac(cjelerzi‘;]ed .|dept|f|cat|on . Efficient carbon
storage ant_ syr; eSt'S © | utilization, carbon-neutral
optimalmaterials energy systems, water

Al for Materials

e Molecules and materials
for next generation e -

Source: Argonne National Laboratory

Bioenergy Technologies Office | 6
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S Imagine if ....

We could , discover, demonstrate, and
deploy faster and with
the help of Al

» Literature

> Experiments » Materials ($) || Operations ($) || Sustainability
> Analys_ls Maximize | » Lowtemp || Selectivity || Stability
» Modeling > Green || Non-toxic || Recyclability

» Data » Other objectives (x)

Q Any tools /

Optimeal
catalysts

Chem Bio Bioener; gy Technolo, gies Office |



08 Al and Tools

Statistical model based on deep learning of massive datasets used to predict words in a

LM sequence of natural language.
GM ML model that can generate new data based on the patterns learned from input data
DL Use deep neural networks, as a mechanism for ML algorithms to learn

complex patterns from data

Developing algorithms that can learn from data

Creating intelligent agents that can reason, learn, and act
autonomously (AIM)

ChemCatBio Bioenergy Technologies Office | 8



08 How Can Computations & Al Help Catalysis ?

* Al-Guided Design
- Informatics: Create and
manage properties data
- Optimization: Optimal
materials and conditions
* Creating New Materials
- Automated chemical synthesis
- Automated materials
characterization
» Catalysis and Democracy
- Public-accessible information

- Catalyst knowledge accessible for
everyone

- Foundational models (GPTs)
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OO Overview of Al in Materials Research

Artificial Intelligen Al
(Generic term, mimic cognitive functions)

Machine Learning, ML
(Number of samples > 100)
Linear Regression, Random Forest, Decision Trees, Gaussian Processes, ...

Deep Learning. DL
| (Number of samples > 500)
Artificial Neural Network (ANN), Convolution Neural Network (CNN), Graph Neural
Network (GNN), Variational Encoders (VAE), Generative Adversarial Network (GAN),
Recurrent Neural Network (RNN), Deep Reinforcement Learning (DRL), ...

Atomic Structure
(Molecules, Solids,
Proteins)

Chemical Formula, ‘ Text/Literature

| XRD, XAS, Raman, NMR,
UV-vis, XANES, SEM, STM, STEM images

| Electron/Phonon DOS | J :

Given x and y, find a solution f(x) that predicts y
y=0(W X + b) (Fits any function)
o : nhon-linear activation
W: trainable weights

|
|
|
| | SMILES, Fragments ‘
|
|

ChemCatBio

Open Catalyst 2022 (OC22) Dataset

Contains: Applications:
Adsorbate T
coverdde Water splitting,
O, H, N, C, fuel cells
OH, OOH,
H,0, CO, O o an an asy
2 z - H* :===== Batteries
Epin WO R R
polarization H.
S = production
Vacancy
defects - Equilibrium
rticl
Binary oxides nanoparticie

. -H* h
- H'+H,0 || shape

1.3 million DFT calculations

e Structure and BE of intermediates
« HER, OER, Red (CO2, N2)

* No kinetics

Bioenergy Technologies Office | 10



()~ Materials Data Ecosystem Datalub

ChemCatBio

® Catalyst data ecosystem services and tools are
belng built and populated (MDF, Datahub)

¢ oriow O [

; Automatic - FLOW for Materials Discovery

The

Materials @ matminer Materials|O

Project
D AAS
Citrination FACILITY

OQMD R
The Open Quantum & m D L H u b -&:
MATERIALSCLOUD Materials Database = [EESS_—WE SN = = https//www.dlhuboorg

(\’ [MLExchangeJ pymatgen
AST MATERIALS INNOVATION NETWORK M a n y Oth e rS

ChemCatBio Bioenergy Technologies Office |




(O~ Al for Catalysis: Data-Driven “Cat” Exploration

Nudged Elastic Band Calculations Accelerated with Gaussian Process Regression Based
on Inverse Interatomic Distances

Olli-Pekka Koistinen, Vilhjalmur Asgeirsson, Aki Vehtari, and Hannes Jénsson*

@ Cite this: J. Chem. Theory Comput. 2019,15,12, 6738~ net Citation: Shar ddto  Exp

acle Views
g:z:.cm.m Date: October 22,2019 1479 8 40 @ (#)

https://doi.org/10.1021/acsjctc.9b00692

LEARN ABOUT THESE METRICS
Copyright © 2019 American Chemical Society

. | computational
npj P

materials www.nature.com/npjcompumats

M) Check for updates

REVIEW ARTICLE E
Machine-learning atomic simulation for heterogeneous
catalysis

Dongxiao Chen', Cheng Shang'? and Zhi-Pan Liu®'***

Heterogeneous catalysis is at the heart of chemistry. New theoretical methods based on machine learning (ML) techniques that
emerged in recent years provide a new avenue to disclose the structures and reaction in complex catalytic systems. Here we review
briefly the history of atomic simulations in catalysis and then focus on the recent trend shifting toward ML potential calculations.
The advanced methods developed by our group are outlined to illustrate how complex structures and reaction networks can be
resolved using the ML potential in combination with efficient global optimization methods. The future of atomic simulation in
catalysis is outlooked.

i Computational Materals (202352 Wsps ok rg/10.1038/s1524-022.00859-
Review Article | Published: 23 February 2023

Bridging the complexity gap in computational
heterogeneous catalysis with machine learning

Nature Catalysis 6, 122-136 (2023) | Cite this article

ChemCatBio

Machine Learning for Heterogeneous
Catalyst Design and Discovery

Bryan R. Goldsmith, Jacques Esterhuizen, and Jin-Xun Liu
Dept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136

Christopher ). Bartel
Dept. of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309

Christopher Sutton
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Theory Dept., Faradayweg 4-6, Berlin D-14195, Germany

DOI 10.1002/aic.16198
Published online May 25, 2018 in Wiley Online Library (wileyonlinelibrary.com)

Perspective \ Published: 26 January 2023

Exploring catalytic reaction networks with machine
learning

Johannes T. Margraf &, Hyunwook Jung, Christoph Scheurer & Karsten Reuter

Nature Catalysis 6, 112-121(2023) | Cite this article

Bioenergy Technologies Office |
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08 Emerging Al for Materials Science and Chemistry

R&D PAPERS (2023*)
8.00E+04

14Y

6.00E+04

4.00E+04

2.00E+04

(7]
o
(J]
=)
£
(J]
.2
=)
L
(J]
(2’

)
0.00E+00 s
MAT_INF

Bioenergy Technologies Office | 13

ChemCatBio



()~ Tools Available for Catalyst Design

+ Statistical Models - Bayesian Approaches « Beyond GPT 4
« Analytical models « On the fly optimization *  Multi-modality
* Monte Carlo simulations « Design of the experiments « Autonomous
agents
1 2 3 4 5 6
| ==, \) = J T)
O O O O |
+ Self-supervised Need
. ics- . general and
Physics-based * Autonomous reliable data

simulations

« DFT/MD calculations - Natural language

. Expensive + ML/DL + Data from everywhere!
- Data-Driven Catalysis Science « LLM for Everything
* Inverse design of materials « Generative modeling
 Deep geometric learning  GPT4 or better...

* Imaging and characterization

Chem Bio Bioenergy Technologies Office |



Multiscale
Modeling With the
Help of Al

Physics-informed
Neural Nets

Gonsortium for Computal
Physics and Chemistry

micv RATORY

Argonne @ \ML Ny |ZENREL |#QaxRmCE

Pacific
Dol Twnex

ol eboratry

A multi-scale problem ... A multi-lab solution

Achieving bigger
time/length scales

ChemCatBio Bioenergy Technologies Office |



08 Designh of Molecules and Catalysts

© Known LOHCs
@ New LOHCs

Discover new Molecules ey ‘
. o i oo
Energy St d Y \ 0\ M
nergy Storage | Hydrogen Storage " Qo4 $o N ‘}000
Grid storage based on | Liquid Organic . ) 9
organic materials Hydrogen Carriers CE\’\g
M HsC. N A
b ) o| AL,
|||| N. = )_@ Chemical Space
) »
"ol o —

55 6 65 7 yum,

Liquid Organic Hydrogen Carriers

i ™ RovAL SOCIETY
B:gétg\llery awp OF CHEMISTRY
PAPER
) Check for updates Uncovering novel liquid organic hydrogen carriers:

a systematic exploration of chemical compound
space using cheminformatics and quantum
chemical methods+t

Cite this: DOI: 101039/d3dd00123g

Hassan Harb, ®2 Sarah N. Elliott, ©®° Logan Ward, ®°¢ lan T. Foster,®
Stephen J. Klippenstein,@b Larry A. Curtiss ©2 and Rajeev Surendran Assary@"a

ChemCatBio

n Desired
S R&D**
E| O e e
- ®
= AN Scenario
3 R&D** o — B
g * .Compromise e S
g
® *C-0’ cleavage
S *C-H’ cleavage ‘ =
Catalyst Cost ($) comp S
Catalyst: Property Prediction
iqi 7 ROYAL SOCIETY
D!gltal o OF CHEMISTRY
Discovery
View Article Onli
PAPER o st
M) Check for updates Accelerating the evaluation of crucial descriptors

Cite this: Digital Discovery, 2023, 2, 59

for catalyst screening via message passing neural
networkf

Hieu A. Doan, © *2 Chenyang Li, @2 Logan Ward, ©® Mingxia Zhou,® Larry A. Curtiss®
and Rajeev S. Assary (2*@

Bioenergy Technologies Office | 16



(34 New LOHC From 166 Billion Molecu

166 billion to 1T milliion

Screening using Tannimotto

Sty Scoring Criteria

T million to 3000

Chemical Compound
Space
~10* molecules

les

3000 de/hydrogenation calculations

DFT Calculations

ZINC15m

)
Heuristic

Structure Enthalpy

Screen

Unsaturated

1,000

)|
J

Organic

Molecules Screen

DFT-based )
Enthalpy

j

Screen

Commercially available species

Heuristic h
Enthalpy

3,ooo>‘
J

Screen

DFT-based )
Enthalpy

2060 >
J

Screen

GDB-17 (R e @5[

Larger chemical space

Capacity/
Practicality
Screen

Capacity/
Practicality
Screen

https://github.com/HydrogenStorage/screening-large-databases

https://github.com/HydrogenStorage/LOHC

ChemCatBio

37

Bioenergy Technologies Office |


https://github.com/HydrogenStorage/screening-large-databases
https://github.com/HydrogenStorage/LOHC

Molecular
Screening to
Experiments

Catalyst design and
decarbonization center

In-house developed
catalysts

Performance evaluation

Catalyst degradation
studies

ChemCatBio

NH

N
N

O O f N /
o N -
= = ~

AH/10=6.50 AH /10 =5.81
E=6.45 E=5.83

N N
\ /
—N
AH /10 = 6.10
E=6.10

https://github.com/HydrogenStorage/screening-large-databases

https://github.com/HydrogenStorage/LOHC

Bioenergy Technologies Office |
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Molecular Screening
From Large
Chemical Space

Liquid Organic Hydrogen
Carriers

ChemCatBio

Argon ne o RESEARCH WORKWITHUS COMMUNITY  ABOUTUS

NATIONAL LABORATORY

PRESS RELEASE | ARGONNE NATIONAL LABORATORY

Al helps whittle down candidates for hydrogen carriers in
liquid form from billions to about 40

Energy could be stored in hydrogen carrier molecules to be used as fuel

BY JOSEPH E. HARMON | JANUARY 10, 2024 _

In an Al-based exploration of 160 billion organic molecules, Argonne scientists Media Contacts
identified about 40 liquid hydrogen carriers that could one day fuel cars, trucks,
buses, trains and ships and generate energy for consumers.

Experts Guide
Press Releases

Feature Stories
In a computational study leveraging artificial

intelligence (Al), scientists at the U.S. In the News

Department of Energy’s (DOE) Argonne Media Tips

National Laboratory assessed 160 billion

molecules, a number exceeding the people Subscribe to Argonne

born in the entire span of human history. Their

goal was to screen the molecules for suitability SHARE

0000

as liquid carriers of hydrogen.

Liquid hydrogen carriers could one day fuel cars, trucks, buses, trains,

Bioenergy Technologies Office | 19



08 Design of Molecules and Catalysts

n Desired -
B
] ] ] ] % R&D*:\‘\‘ Scenario
» ldentify active and inexpensive 3 | J—
deoxygenation catalyst 8 “CH demans
> Utilize data-driven models Catalyst Cost () ]
» Develop Al capability at CCPC Catalyst: Property prediction
Digital 7 ROYAL SOCIETY

. OF CHEMISTRY
Discovery -

View Article Online

PAPER View Joumal | View e

M Check for updates Accelerating the evaluation of crucial descriptors
o for catalyst screening via message passing neural
networkf

Hieu A. Doan, © *2 Chenyang Li, ©2 Logan Ward, & Mingxia Zhou,? Larry A. Curtiss®
and Rajeev S. Assary & *2

Cite this: Digital Discovery, 2023, 2, 59

ChemCatBio Bioenergy Technologies Office | 20



(O~ Example Problem: Catalytic Fast Pyrolysis With Mo,C

100

1 I C2
90 [ Propylene
g0 | N Propane a High activity and selectivity toward
70 C-O/C=0 bond cleavage
g 91
£ sl
* o] Q Susceptible to deactivation by
so—: surface oxidation and coke
20 formation
10 4
il - Excess H, co-feed required

Propanal Propanol Acetone 2-Propanol
/\ /0 /\/OH )ok )OH\

Deoxygenation: Ren, H, Vlachos, D., Chen, J. G., et al., ChemSusChem 2013, 6, 798-801
CO2 reduction: Khoshooel, M. A, Snurr, R, Furha, O., et al, Science, 2024, 384, 540-546

Chem Bio Bioenergy Technologies Office | 21



O* Removal via H,0 Formation

3.0
2.5
2.0
1.5

[eV]

1.0
0.5
0.0

BEO(undoped) =-1.88




[eV]

O* Removal via H,0 Formation

3.0
2.5
2.0
1.5
1.0
0.5
0.0

-0.5

H* + O* => HO* HO* + HO* => H,0* + O*
0.14
Ny

E BEO(undoped) =-1.88
BEO(Ni—doped) =-1.53

Zhou, Assary, et al., J. Phys. Chem. C 2018, 122, 1595-1603

HZO* => Hzo(g) +*

09!



O* Removal via H,0 Formation

30 H* + O* => HO* HO* + HO* => H,0* + O* H,0* => H,0(g) + *
2.5
1
2.0 09
% 15 0.14 096
— 1.0 _——
» 0.27
0.5 N 9
0.0 0'%
05 E BEO(undoped) =-1.88

BEO(Ni—doped) =-1.53

Zhou, Assary, et al., J. Phys. Chem. C 2018, 122, 1595-1603



O* Removal via H,0 Formation

30 H* + O* => HO* HO* + HO* => H,0* + O* H,0* => H,0(g) + *
2.5
1
2.0 09
— A4
% 1.5 0 096
e . /
0 o) 0.27
0.5 N
0%

0.0
E BEO(undoped) =-1.88
-0.5

BEO(Ni—doped) =-1.53

removal => improved catalyst stability ?

25



O~ Cost-Efficient Estimation of Crucial Descriptors

* Develop data of oxygen binding energy
- Structure (graph) fits against binding energy
- Develop a deep learning model

* In future, provide a graph (approximate str)

- Model predicts oxygen binding energy (msvs 4
hours)
- Uses: Wulf construction, catalyst-regional reactivity

ChemCatBio . Bioener rgy Technologies Office



08 Data Generation for Catalyst Screening

* Insilico Data: Development of 20K VASP Deoxygenation
 Develop a Graph Neural Network for Property Prediction

Unoptimized o - Element
adsorption Local coordination - Coordination number
geomeiry graph O Atomfeatures |- Atom type: adsorbate, 1%, or

- Catalyst Enumeration | 2m nearest neighbor (NN)

- Neighbor atom list
m % ("~ Bond features |- Bond type: adsorption/lattice
- Bond length

- (Beginning atom, Ending atom)

© Adsorbate /&
O 1tNN \/’\‘\/ Connectivity/adjacency matrix
(a) O 29NN |
Message passing layers Fully connected
layers
Read-out
Iayer Output layer
>BEOJ
DFT Simulations
(b)
High-throughput structure enumeration and data Message passing neural network using local coordination
generation (20K) for oxygen adsorption on pristine and doped  graph representation (LCG-MPNN) for predicting oxygen
Mo,C catalyst surfaces binding energies (BEO) on Mo,C catalyst surfaces.

Chem Bio Bioenergy Technologies Office |



OC) Comparison of Computed vs Learnt Data

= 20 K adsorption energy calculations = BE —model results comparable with
binary and tertiary alloys (MAE 0.1 to 1.0 eV, a year ago!)

1400
=1 Doped Mo,C 0.0 @) —— 0.70 o)
=0.95¢eV i on”
1200 i e SO i MAE = 0.176 eV - 4 0,604
1.04 . ©
10001 201 0.501
S S
— 800 i 2 0401
3 5o 30 w o
3 600 % ) <§c 0.30-
4.0 - MAE (oY) 0.20 4 o
0294 ) 0]
400' 50 12030"““_1280."8
: 0.10
PR N RO
2004 B0k RIS LT 0.00
ilhit _ 60 80 40 30 20 40 00 1K 5K 10K 15K 20K
0 '“' = 30 o o oh BEo(eV) Data size (# of catalyst surfaces)

BE, (eV)

Parity plot of oxygen binding energies predicted by
LCG-MPNN (BE_ML) and computed by DFT ( BE_DFT) on
the test set

Oxygen binding energy distribution on
pristine and doped Mo,C facets

https://github.com/MolecularMaterials/nfp

Chem Bio Bioenergy Technologies Office |
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08 Analysis of Descriptor Trends and Feature Importance

Fraction

©11) (110) (101) (010) (100) (001) (111)

(c)

t-SNE2
Fraction

o
=]

©i1) (1) (101)

(@)

(©10) (100) (@01) (111)

0.4+

[ =
: s
: O
’ ] -
-100- &
5.0
-100 -50 0 50 100 ©I1) (1) (101) (10) (100) ©01) (1)
t-SNE1 Surface index

2D t-distributed stochastic neighbor embedding (t-SNE)
plot of graph-level features from the readout layer.

ChemCatBio

Norm. iradienl

0.0 0.2 0.4 0.6 0.8 1.0

Ta-Mo,C(100)
BEL =-5.58 eV
(E.EQ =-5.66 eV)

Mo,C(101)
BEN"=-3.33 eV
(BEQ =-3.37eV)

Co-Mo,C(010)
BER'=-1.41eV
(BEq =-1.42 &V)

Graphical illustration of atom contribution to the prediction
of oxygen binding energy.

Bioenergy Technologies Office |
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PRESS RELEASE | ARGONNE NATIONAL LABORATORY

Machine learning model speeds up assessing catalysts for
Toward decarbonization technology from months to milliseconds

Acce I e rated BY JOSEPH E. HARMON | FEBRUARY 28, 2023 _
Catal st Sesi n Scientists create computational model for identifying low-cost catalysts that .

y convert biomass into fuels and useful chemicals with low carbon footprint.
Experts Guide

Next time you drive past farms or prairies Press Releases

and ponds on a rural road, look around.

) ' 6}’ Feature Stories
They are a rich source of biomass. That ., =
includes corn, soybeans, sugar cane, oyt Sructre In the News
switchgrass, algae and other plant matter.
These carbon-rich materials can be Social Media
converted to liquid fuels and chemicals with . D R
ia Tii

many possible applications. There is enough Computer Srmtion ps
biomass in the United States, for example, to ‘ . Subscribe to Argonne
produce renewable jet fuel for all air travel. The newly developed machine learning model greatly

speeds up assessing the properties of molybdenum
A major stumbling block at present is lack of carbide catalysts for biomass conversion to useful SHARE

: roducts (top path) compared with current computer
effective, low-cost catalysts needed to P! {top path) P P

imulati thods (bott th). (I by Al
transform biomass into biofuel or other Slmgalon methads {aottom patf. (Image by Argenne o o @ e
National Laboratory.)
useful products. Researchers at the U.S.
Department of Energy’s (DOE) Argonne
National Laboratory report developing an artificial intelligence-based model to speed up the CONTACT Us

process for engineering a low-cost catalyst based on molybdenum carbide. For More Information or Media
Related Inquiries

+1-630-252-5580 | media@anl.gov

“..with our deep learning model we can now do accurate and inexpensive caleulations

Jor tens of thousands of structures in milliseconds. It is materials screening on steroids.” CONTACT US

H — Hieu Doan, A i fenti To di tential h
Deoxygenation Catalysts ot o Ao s partnership with Argonne or to
;l;g::‘rglggb;ut licensing Argonne

+1-800-627-2596

“Biomass is an organic material, meaning it is full of carbon,” said Rajeev Assary, group leader in
Argonne’s Materials Science Division (MSD). “The ultimate goal is to cheaply transform that

ChemCatBio Bioenergy Technologies Office |




S Integrating LLMs in Catalyst Discovery Sciences

* ReactionTb * MG-BERT
« T5Chem * DrugGPT
e ChemBench * SciBERT

« ChemCrow * MatBERT

* ChemReasoner e MatSciBERT

. « ChemBERTa-2 * MaterialsBERT
* Augment Existing LLMs ch LLM MatSCOA
- Chain of thought prompting and data extraction em- atSCQ
* RetroBioCat e CataLM

* Combine and Enhance Models
- Integrate the data with relevant LLM models ¢ ChemGPT
- Introduce additional regression layers

* Fine Tuning to Specific Problems
- Develop targeted data for specific needs
- Develop RAG systems for catalysts

Large language models and automated

agents for chemistry and materials

Chem Bio Bioenergy Technologies Office | 31



O~ “Soon...Hey Siri, can you recommend me....?

* “Hey Siri, can you recommend me the best naturally
abundant, green, heterogeneous catalyst for deoxygenation
reaction of 2-butanol? | am willing to spend $1 per Kg of

the catalyst.”
- Certainly!
e (Start with positive assurance - management 101)
- Catalysts for 2-butanol - if not available
 finding alternatives for you!
- Dollar information is not available.

* Processed data:
- Here are the tools for catalyst cost prediction (use Cat Cost)...

- Sorry, best catalysts are all precious metal catalyst (Truth!)
* However, there Fe-Pt-U alloy can do something (Hallucinations or Truth!)

Chem Bioener, gy Technologies Office | 32



O~ Summary

* Al combined with atomistic modeling can provide valuable insights
» Molecular Discovery from Large Chemical Space
» Data-driven Materials Property Prediction
* Near-term: Al will advance catalyst design via:
- Adsorption energy and microkinetic modeling
- Experimental validation is crucial

* Red hot: There is vast opportunity for us (catalysis community), to utilize
growing strengths of Al (LLM, DL) and HPC/HTE

- Al tools of synthesis of catalysts
- Al for catalyst characterization

Great Catalysts = Great Quality of Life

Chem Bioenergy Technologies Office | 33



ChemCatBio

Chemical Catalysis for Bioenergy

? Energy Materials Network

) U.S. Department of Energy

Thank you

NS |t »e
= |ENERGY )3
TL|Ssmiceqy | ==

LABORATORY Tantormsng ENERGY

ATEQUDE@

Iooho Nafnol beratry

chemcatbio.org

A multi-scale problem ... A multi-lab solution

This work was performed in collaboration
with the Chemical Catalysis for Bioenergy
Consortium (ChemCatBio, CCB), a member
of the Energy Materials Network (EMN)

e Office of ENERGY EFFICIENCY
ENERGY  z renewssie enercy
BIOENERGY TECHNOLOGIES OFFICE




- Q&A

Rajeev Surendran Assary

Argonne National Laboratory
assary@anl.gov
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OQ Al help in predicting optimal properties

New Molecules New Catalysts

CM[RETHR

THE JOURNAL OF Dlgltal
PHYSICAL i
wivNNg Discovery

o N
N

‘): _Xﬁr':»\ - 2
L . . e

= ACS Publications
ACSPublications Wit Trustect Mast Cited, lost e
Most Trusted. Most Cited, Most Read

icati A4
A 4 i L i
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A multi-scale problem ... A multi-lab solution
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The CCPC constructs and utilizes computational
models to discover new materials for bioenergy
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% ALCC Computing (THETA) of bioenergy technologies to commercially relevant
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ChemCatBio
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