

DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review

2.5.4.501 Catalyst Deactivation Mitigation for Biomass Conversion (CDM)

March 5th, 2019 Catalytic Upgrading Huamin Wang Pacific Northwest National Laboratory

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE

ChemCatBio Foundation

Integrated and collaborative portfolio of catalytic technologies

and enabling capabilities

Catalytic Technologies

Catalytic Upgrading of Biochemical Intermediates (NREL, PNNL, ORNL, LANL, NREL*)

Catalytic Upgrading of Indirect Liquefaction Intermediates (NREL, PNNL, ORNL)

> Catalytic Fast Pyrolysis (NREL, PNNL)

Electrocatalytic and Thermocatalytic CO₂ Utilization (NREL, ORNL*)

*FY19 Seed Project

Enabling Capabilities Advanced Catalyst Synthesis

and Characterization (NREL, ANL, ORNL, SNL)

Catalyst Cost Model Development (NREL, PNNL)

Consortium for Computational Physics and Chemistry (ORNL, NREL, PNNL, ANL, NETL)

Catalyst Deactivation Mitigation for Biomass Conversion (PNNL)

Cross-Cutting Support

ChemCatBio Lead Team Support (NREL)

ChemCatBio DataHUB (NREL)

Industry Partnerships (Directed Funding)

Gevo (NREL)

ALD Nano/JM (NREL)

Vertimass (ORNL)

Opus12(NREL)

Visolis (PNNL)

Lanzatech (PNNL) - Fuel

Gevo (LANL)

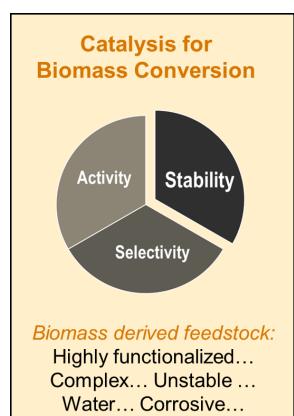
Lanzatech (PNNL) - TPA

Sironix (LANL)

ChemCatBio

CDM Goal Statement

Challenges: Biomass derived feedstocks bring new challenges to catalyst longevity for biomass conversion processes


Project Goal: Improve catalyst stability (lifetime) for ChemCatBio (CCB) catalysis projects through understanding catalyst deactivation and developing mitigation approaches

Outcome: Collaborate with CCB projects to provide

- Strategies to extend catalyst lifetime for catalytic process with specific focus on catalyst regeneration
- A document to summarize the established connection between characteristics of biomass derived feedstocks and corresponding catalyst deactivation

Relevance:

- Enable cost and risk reductions of catalysis processes for BETO conversion technologies
- Fulfill the need of emphasis on the catalyst stability metric in catalysis and biomass conversion R&D

Contaminates...

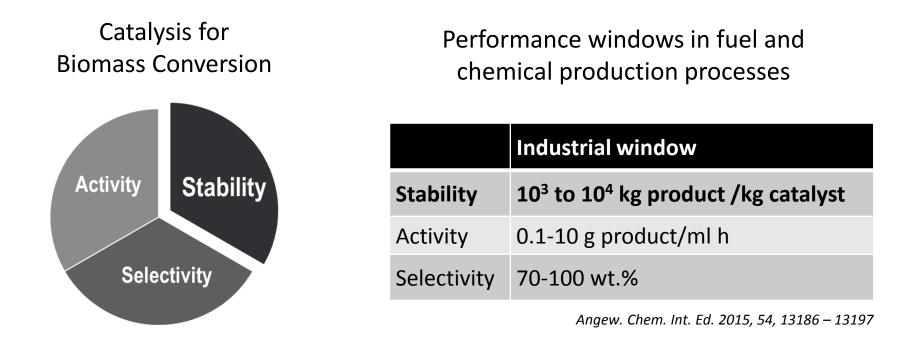
Quad Chart Overview

Timeline

- Project start date: 10/1/2018
- Project end date: 9/30/2021
- Percent complete: 8%

	FY 17 Costs	FY 18 Costs	Total Planned Funding (FY 19-21)
DOE Funded	\$0	\$0	\$900 k

Barriers Addressed

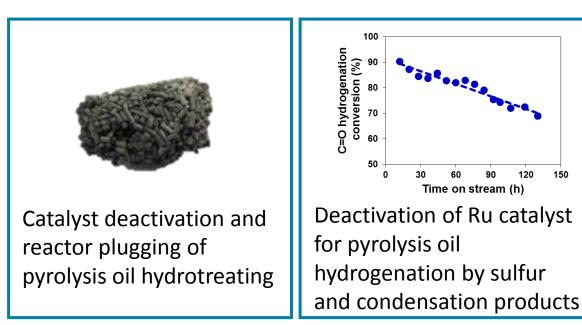

Ct-E. Improving Catalyst Lifetime

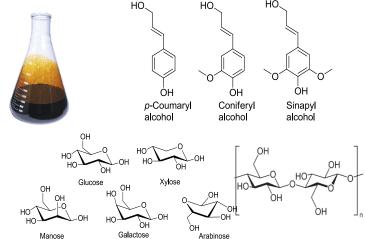
- Understanding causes of catalyst deactivation
- Develop improved catalyst regeneration

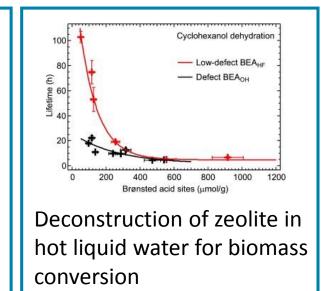
Objective: Address catalyst deactivation challenges in catalytic processes to enable catalyst lifetime improvement for cost and risk reduction of biomass conversion technologies

End of Project Goal: Elucidate catalyst deactivation and mitigation aspects in BETO biomass conversion technologies and demonstrate value by assisting at least two or three CCB core catalysis projects to reach their cost target and/or catalyst lifetime target by understanding catalyst deactivation mechanisms and developing catalyst regeneration protocols

1 – Project Overview - Catalyst stability is no less important than activity and selectivity


- Mechanistic understanding of catalyst deactivation and developing strategies to extend catalyst lifetime are vital to the success of process development
- Among the three performance metrics, stability is usually the least explored, and the factors that cause catalysts to die are the least understood, at a fundamental level...


ACS Catal. 2018, 8, 8597


1 – **Project Overview** - Biomass derived feedstocks bring new challenges to catalyst longevity

Compared to fossil, most biomass derived feedstocks are

- Complex, highly functionalized, unstable
- Containing contaminates (from biomass or processing unit)
 - S, N containing species
 - Ca, K, Mg, Na, Si, Fe, Cr...
- Requiring polar/aqueous and corrosive conditions

150

1 – **Project Overview** - This project is based on PNNL's previous efforts on addressing catalyst deactivation issues

Si-CP-MAS NMR

Si(CH₃)₃Cl

ppm

PNNL BETO projects

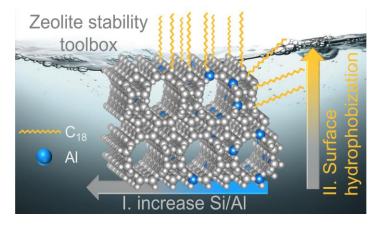
Bio-oil Hydrotreating Sulfide catalysts

Bio-oil stabilization Reduced metal catalysts

Aqueous acetic acid conversion Transition metal oxides Prevent plugging and extend operation time from ~90 to >1400 hours

Develop regeneration and extend lifetime from ~150 to >800 hours

Demonstrate stable conversion of real feed in condensed phase

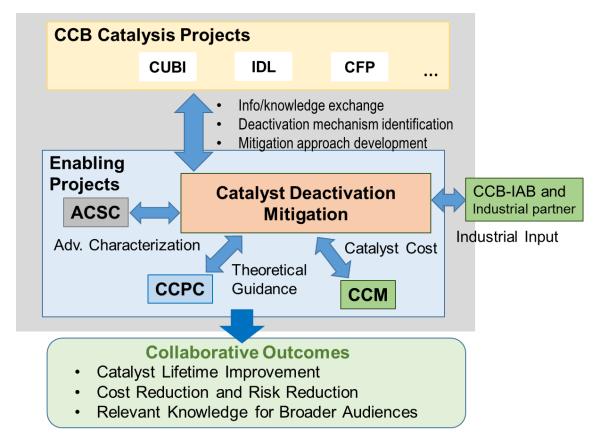

PNNL BES and LDRD projects Dehydration in hot condensed water

Defective

BEA Zeolite

- Deactivation: Silanol defect interaction with water
- Mitigation: Lower defect density by new synthesis; Lower water in pore by tuning hydrophobicity
- Outcome: >5 times improvement of catalyst lifetime

S. Prodinger, et al, J. Am. Chem. Soc. 2016; Chem. Mater. 2017; Appl. Catal. B, 2018

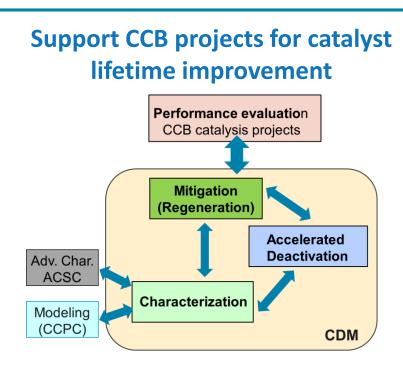

We will leverage our previous efforts to understand and mitigate catalyst deactivation for biomass conversion in both applied and fundamental research projects

Stabilized

ChemCatBio

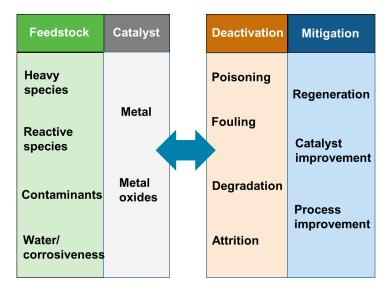
1 – Project Overview - Addressing catalyst deactivation issue requires integrated and collaborative efforts within CCB

- Catalyst deactivation is a broad challenge and shares some commonality for CCB catalytic projects
- This project will establish an *integrated and collaborative* portfolio of catalytic and enabling technologies for addressing overarching *catalyst deactivation issues* for biomass conversion



NREL, PNNL, ORNL, LANL, ANL ...

CUBI: Catalytic Upgrading of Biochemical Intermediates **IDL**: Catalytic Upgrading of Indirect Liquefaction Intermediates **CFP**: Catalytic Fast Pyrolysis **ACSC**: Advanced Catalyst Synthesis and Characterization **CCM**: Catalyst Cost Model Development **CCPC**: Consortium for Computational Physics and Chemistry


ChemCatBio

1 – Project Overview - Support CCB projects to mitigate catalyst deactivation and provide a summary document

- Provide better understanding of catalyst deactivation causes
- Develop mitigation approach with a specific focus on regeneration
- Demonstrate impact on lifetime improvement and cost reduction

A document to summarize the connection

- Summarize the connection between biomass derived feedstock and catalyst with consequent deactivation and mitigation
- Share with CCB and broader audiences

ChemCatBio

2 – Management Approach - This project will be evaluated by its value to CCB catalysis projects

Coordination Within CCB

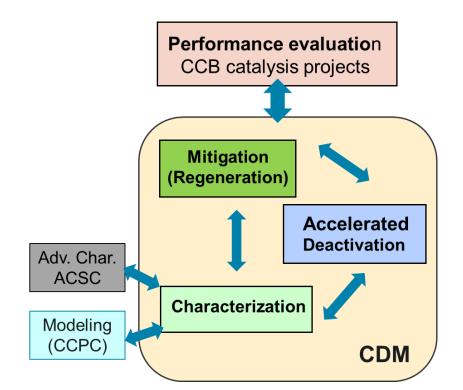
- Information exchange
 - CCB biweekly steering committee meeting
 - CCB onsite meeting
 - CCB industrial advisory board (IAB) meeting
 - Direct interaction with CCB project Pls
- Collaboration
 - Joint efforts to address deactivation challenges (joint milestones)
 - Direct interaction with CCB project PIs for identifying targets and for sample and data handling

Structure

Outreach and
CommunicationDeactivation
Mechanism
IdentificationDeactivation
Mitigation
Development

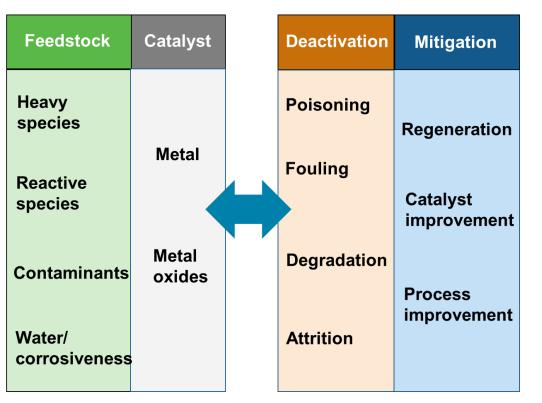
Project Management

- Milestones
- Go/No-Go decision
- Quarterly report
- Regular interaction with CCB and catalysis teams
- Regular interaction with CCB IAB and industrial experts


FY20 Go/No-Go

Prove that the CDM has provided value to CCB catalysis projects

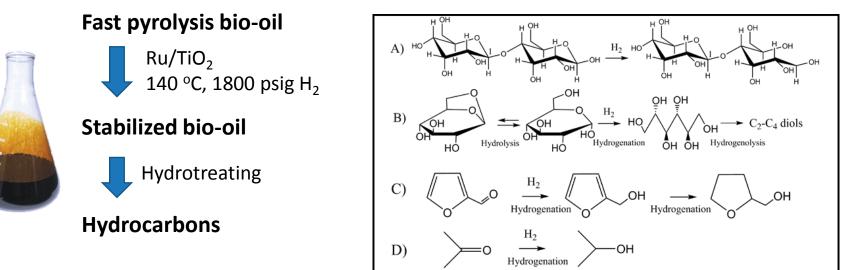
- Enhance understanding deactivation; develop mitigation; extend catalyst lifetime
- Identify catalytic processes for further collaboration


2 – *Technical Approach* - Understand catalyst deactivation and develop mitigation for CCB projects

- Hypothesis-driven catalyst *deactivation* mechanism identification
 - Detailed catalyst *characterization* (with ACSC)
 - Potential modeling (with CCPC)
 - Catalytic reaction testing
- Accelerated deactivation method
 - Validate deactivation mechanism
 - Fast stability evaluation
- *Mitigation* approach development
 - Catalyst regeneration, effective and less energy, and material demand
 - Suggestion on catalyst and process improvement
- Verify lifetime enhancement with CCB catalysis projects

ACSC: Advanced Catalyst Synthesis and Characterization **CCPC**: Consortium for Computational Physics and Chemistry

2 – Technical Approach - Provide knowledge on catalyst deactivation issues in biomass conversion

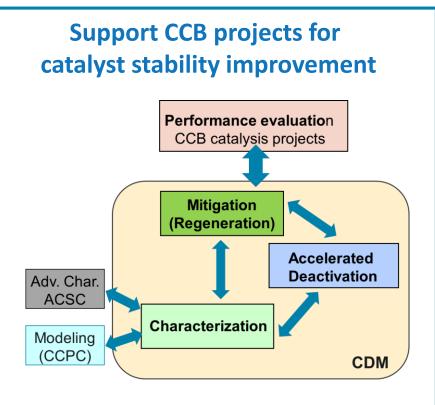


- Identify previous or ongoing efforts on catalyst deactivation and mitigation in biomass conversion
- Establish connections between properties of feedstocks and catalyst with consequent deactivation and mitigation
- Share information with CCB teams and broader biomass catalytic conversion developers (reports and publication)

Provide guideline for rational design of process and catalyst for biomass conversion with enhanced process robustness and catalyst lifetime

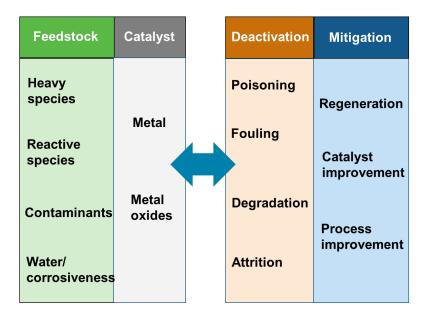
2 – Technical Approach - One example includes bio-oil hydrogenation

Feedstock	Catalyst	Deactivation	Mitigation
Heavy species Reactive species Contaminants Water/ corrosiveness	Supported reduced metal catalysts Ru/TiO ₂ Ru/C Ni/Al ₂ O ₃	Poisoning S to Metal Fouling Degradation Leaching of Ni Phase transition of Al ₂ O ₃	Regeneration Cleaning Reduction Catalyst improvement Ru over TiO ₂ Process improvement Feed separation T, P, LHSV



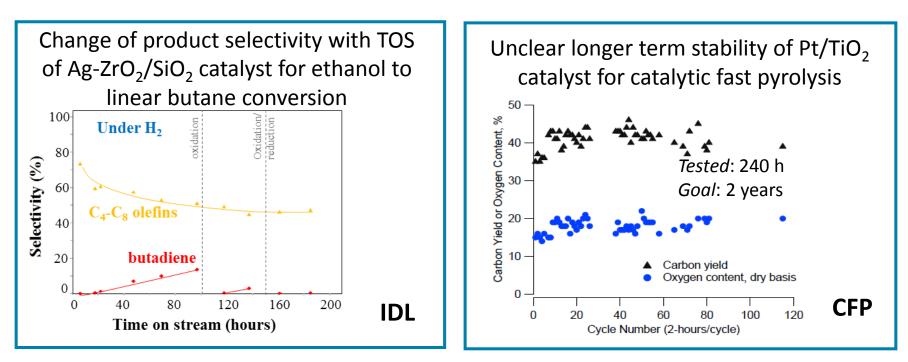
2 – Technical Approach - Challenges and Success Factors

Challenges	Success Factors	Support CCB projects for catalyst stability improvement
Develop rigorous understanding of deactivation mechanism	 Hypothesis-driven research Advanced characterization (ACSC) Guidance by theory (CCPC) 	Adv. Char. Adv. Char.
Relevant and impactful mitigation approach	 Work closely with CCB catalysis team and their techno-economic analysis partners to ensure economic benefit Get input from industrial advisors (CCB IAB and subcontract) 	Modeling (CCPC) Characterization Document to summarize connections Feedstock Catalyst Deactivation Mitigation Heavy Poisoning
Adequate involvement of CCB projects	 Engage CCB projects and steering committee early and frequently Information exchange by meetings and reports 	Metal Fouling Regeneration Reactive species Metal Fouling Catalyst improvement Contaminants Metal oxides Degradation Process improvement Water/ corrosiveness Attrition Process improvement


ACSC: Advanced Catalyst Synthesis and Characterization **CCPC**: Consortium for Computational Physics and Chemistry

3 – Technical Progress - Identified catalytic processes in CCB to address catalyst deactivation issues

- Pt/TiO₂ catalyst for catalytic fast pyrolysis of woody biomass (NREL, PNNL)
- Ag-ZrO₂/SiO₂ catalyst for ethanol to linear butenes (PNNL)


A document to summarize the connection

- Bio-oil hydrogenation on Ru catalyst
- Aqueous phase hydration on zeolite
- Oxygenates conversion on zeolite
- Aqueous acid conversion on oxides
- CFP on metal catalysts...

4 – *Relevance* - Addresses catalyst stability issues for BETO CCB catalysis projects

- Support BETO to address barriers and achieve targets
 - Ct-E. Improving Catalyst Lifetime
- Enhance the CCB portfolio
 - Catalyst deactivation is one of the major challenges and its mitigation is one of critical components for CCB – CCB Industrial Advisory Board
 - Achieve cost and risk reduction for the catalytic conversion technologies

• Leverage existing applied and fundamental research efforts and industrial supports

4 – *Relevance* – Provides demanding information on catalyst deactivation and mitigation

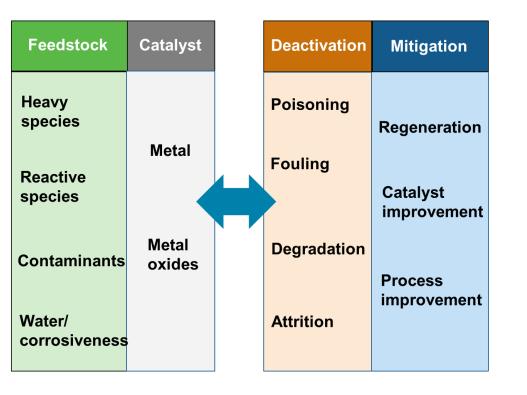
- Provide knowledge to *catalysis R&D communities* for rational design of robust catalysts
 - "Since such studies (catalyst deactivation) are currently under-presented in the catalysis literature, our science will advance, and our community will benefit from increased emphasis on the productivity (catalyst stability) metric." Susannah L. Scott, Associate Editor, ACS Catalysis

Cite This: ACS Catal. 2018, 8, 8597–8599

pubs.acs.org/acscatalysis

ACS Catal. 2018, 8, 8597

A Matter of Life(time) and Death


THE CATECHISM

The three "virtues" of catalyst performance are activity, selectivity, and productivity (the last of these being related to catalyst lifetime). In Murzin's textbook "Engineering Catalysis",¹ they are called the "trinity of catalysis". Activity is usually the metric of highest interest to academic researchers (although in practice it is often straightforward to compensate for low activity simply by increasing the amount of catalyst in

supported catalyst may not even be noticed if the molecular fragments also catalyze the desired reaction, and they may reattach to the catalyst when it is isolated at the end of a run.

The environment plays a crucial role in catalyst stability. Thus, transformations in an inert atmosphere, in the absence of reactants and/or electrical potential, or without crucial components of the feed such as water, can be very different from those that occur under realistic reaction conditions.⁴

5 – Future Work - We will complete a document summarizing connections

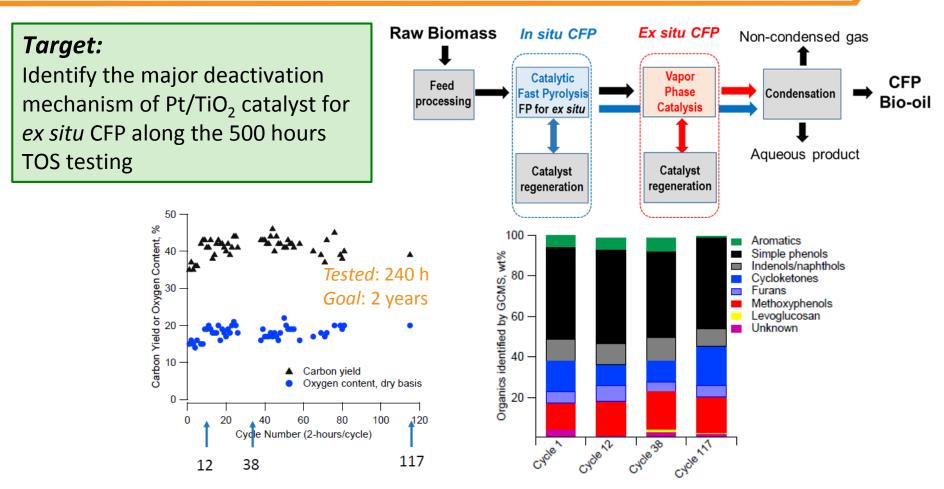
FY19

Q1: Outline and inputs from CCB teams and IAB (accomplished)

Q3: Initial draft on at least four catalytic processes

FY20

Additional catalytic processes included


FY21

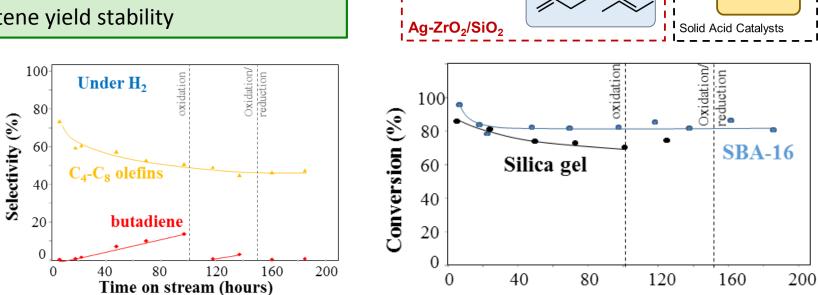
Comprehensive review of current state of knowledge on catalyst deactivation and mitigation in biomass conversion (to be published as a review paper) finished

We will share the extracted underlying factors and connections as guidance for more rational catalyst and process design

ChemCatBio

5 – Future Work - Understanding CFP catalyst deactivation

Catalyst deactivation issues: Change of product selectivity with TOS; requirement of frequent regeneration; unclear long-term stability


Approach: Identify deactivation mechanism along the 500 hours TOS testing through characterization; develop improved regeneration; develop accelerated deactivation

ChemCatBio

5 – Future Work - Extending IDL catalyst lifetime

Target:

- 1. Achieve FY19 IDL milestone on developing a regeneration protocol
- Demonstrate stability improvement of catalyst: 25% increase of linear butene yield stability

Fermentation

Products

ЮН

Wet Ethanol

Syngas

Catalyst deactivation issues: Change of selectivity with TOS; improvement of regeneration required; supports impact stability

Approach: Suggest deactivation mechanism; develop accelerated deactivation; develop improved regeneration

Distillates

Summary

Overview	Address overarching catalyst deactivation challenges and improve catalyst stability (lifetime) for catalytic conversion of biomass
Approach	 Integrated and collaborative effort within CCB Share document on understanding catalyst deactivation and mitigation Improve catalyst lifetime for CCB projects Hypothesis-driven catalyst deactivation mechanism identification Accelerated deactivation method development Catalyst regeneration development
Relevance	 Enable cost and risk reductions of catalysis processes for BETO conversion technologies Provide demanding knowledge to CCB and catalysis R&D communities for rational design of robust catalysts
Future work	 Complete the document on catalyst deactivation and mitigation Case studies and established connection between feedstocks, catalyst, deactivation, and mitigation Improve catalyst lifetime for CCB projects Extend catalyst lifetime for ethanol to linear butene for IDL Understand deactivation of Pt/TiO₂ for CFP

Thank you!

- BETO: Nichole Fitzgerald, Andrea Bailey, Jeremy Leong
- PNNL: Vanessa Dagle, Robert Dagle, Yilin Wang, Michael Thorson, and Asanga Padmaperuma
- NREL: Josh Schaidle
- ORNL: Zhenglong Li

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE

Additional Slides

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE

Acronyms and abbreviations

ACSC	Advanced Synthesis and Characterization project
ANL	Argonne National Laboratory
BETO	Bioenergy Technologies Office
BES	Basic Energy Science, Office of Science
ССВ	Chemical Catalysis for Bioenergy Consortium; ChemCatBio consortium
ССМ	Catalyst Cost Model Development project
CCPC	Consortium for Computational Physics and Chemistry
CDM	Catalyst Deactivation Mitigation project
CFP	Catalytic fast pyrolysis
DOE	U.S. Department of Energy
IAB	Industrial Advisory Board
LANL	Los Alamos National Laboratory
LDRD	Laboratory Directed Research and Development
NETL	National Energy Technology Laboratory
NREL	National Renewable Energy Laboratory
ORNL	Oak Ridge National Laboratory
PNNL	Pacific Northwest National Laboratory
WBS	Work breakdown structure

• This is a new start for FY19

Publications, Patents, Presentations, Awards, and Commercialization

• This is a new start for FY19