

Linking Catalyst and Process Development with Techno-Economic Analysis in the Conversion of Biomass to High-Octane Gasoline

> Daniel Ruddy March 7, 2018

Biomass Grand Challenge: Complex Functionality

Industrially Relevant Syngas-to-Fuels Processes

Traditional syngas to hydrocarbon fuels have known drawbacks

- Fischer Tropsch (FT): Costly catalytic upgrading to produce quality fuels
- Methanol-to-Gasoline (MTG): Capital intensive, high aromatics content
- Mobil Olefins-to-Gasoline-and-Distillate (MOGD): Capital intensive, high number of process steps

Net cost of production from biomass (2014 \$)

- FT = \$3.82/gal (GGE)
- MOGD = \$4.80/gal (GGE)

Advanced catalysts and processes are required to produce cost-competitive biomass-derived fuels

E. Tan, et al., Biofuel Bioprod. Bioref. 2017, 11, 41.

-Conversion of C₁ intermediates (methanol/DME) -Non-FT, non-MTG/MOGD route -Three common fuels from this process -Balance production of each to meet market needs

Overview: DME-to-hydrocarbons process

Key points on the technology

-DME and/or methanol can be synthesized selectively from a number of sources
-Total product is a *paraffin/olefin mixture* with many C₄-C₈ isomers
-Oxygen-free product (except methanol)
-Not MTG: Only observed aromatic is hexamethylbenzene (b.p. 265 °C)
-High-octane product is attractive as renewable *refinery alkylate blendstock*

-High-octane product is attractive as renewable *refinery alkylate blendstock*

-C₄-C₈ olefins are *distillate fuel precursors*

Comparing MTG and HOG Pathways

Methanol to Gasoline (MTG) Pathway	High-Octane Gasoline (HOG) Pathway	Advantages of HOG Pathway
		Branched HC product, minimal aromatics
ZSM-5 zeolite catalyst	Beta-zeolite catalyst	
650 – 950 °F	350 – 450 °F	Lower severity conditions,
315 psia	130 psia	lower coking rate
RON: 92	RON: 95+	High octane synthetic alkylate
MON: 83	MON: 90+	ingli octane synthetic alkylate
55 gal/ton	65 gal/ton	Higher yield (18%)

Process Design for Biomass to High-Octane Gasoline

Long-term targets: 65 gal/dry-ton biomass; \$3.41/gal Near-term values with HBEA catalyst: 40 gal/dry-ton biomass; \$5.20/gal

ChemCatBio

Using the TEA model to aid catalyst development

Sensitivity analysis highlights the importance of developing an *inexpensive catalyst* with a *long lifetime* that demonstrates *high selectivity to C₅₊ products to increase product yield* Selectivity to C₅₊ products is more important than conversion

What limits the performance by HBEA?

Hydrogen Deficiency

 $CH_3OCH_3 \longrightarrow 2 "CH_2" + H_2O$

Need an additional 2H per alkane produced

Yield Loss

 $33 \text{ CH}_3\text{OCH}_3 \longrightarrow 6 \text{ C}_7\text{H}_{16} + 33 \text{ H}_2\text{O} + 2 \text{ C}_6(\text{CH}_3)_6$

Leads to formation of heavy unsaturated hydrocarbons

Dual-Cycle Mechanism → Alkanes **Byproducts** Target Hydrogen Transfer CH₃+ Products CH₂+ Higher ₄ Olefins CH CH₂+ CH₃+ H⁺ CH₂+ Dealkylation Aromatics Olefin

S. Ilias, A. Bhan, ACS Catalysis, 2013

Carbon Pool

Catalyst Improvements Needed

- 1. Shift away from aromatic cycle and toward olefin cycle
- 2. H_2 can be activated and participate in the reaction -reduce aromatic formation, maintain C_{5+} selectivity

Carbon Pool

3. Light alkane products can be reactivated and re-enter the catalytic cycle

-recycle (to extinction) to maximize C₅₊ yield

Cu/BEA for improved DME homologation performance

Catalyst	Aromatic cycle	Olefin cycle	%C as HMB
HBEA	23%	77%	13%
$HBEA + H_2$	21%	79%	7%
$Cu/BEA + H_2$	8%	92%	4%

- Decrease in aromatic (HMB) selectivity for Cu/BEA + H₂
- Products from olefin cycle are favored using Cu/BEA + H₂
- Cu/BEA catalyst achieves the first 2 goals

Schaidle, J.; Ruddy, D.; Habas, S.; Pan, M.; Zhang, G.; Miller, J.; Hensley, J. ACS Catal, (2015) 5, 1794.

ChemCatBio

Bioenergy Technologies Office

What is the role of Cu?

Cu speciation explored using XAS (Argonne National Lab)

- -Observe contributions from *metallic* and *ionic* Cu Multi-functional catalysis:
- (1) metallic Cu activates H₂, performs ethylene/propylene hydrogenation (increases P:O ratio)
- (2) cationic Cu facilitates H-transfer (dehydrogenation)

Schaidle, et al., ACS Catal, 2015, 5, 1794; Farberow et al., ACS Catal 2017, 7, 3662.

TEA Motivation to Recycle C₄ Product

Yield and Cost Impact with C₄ Recycle

*C*₄ product recycle is a critical component in the TEA to achieve high yield and lower cost of production

Why is C_4 dehydrogenation difficult?

Step-wise chain-growth mechanism for DME-to-Hydrocarbons

- Alkanes are considered terminal products no re-incorporation over HBEA
- Dehydrogenation of isobutane offers a simple system to probe the ability of a catalyst to reincorporate C₄ alkanes

Approach: Combined computational and experimental studies over Cu/BEA

Catalyst Materials and Characterization

Catalyst	Pre-treatment	Site (characterization)
CuO/SiO ₂	1% O ₂ , 500 °C	CuO particles (XRD)
Cu/SiO ₂	1% O ₂ , 500 °C; 2% H ₂ , 300 °C	Cu(0) particles (XRD)
H-BEA	1% O ₂ , 500 °C	Brønsted acid (NH ₂ TPD, pyridine-DRIFTS)
ox-IE-Cu/BEA	1% O ₂ , 500 °C	Ionic Cu(II)-zeolite (XAS)
red-IE-Cu/BEA	1% O ₂ , 500 °C; 2% H ₂ , 300 °C	Ionic Cu(I)-zeolite (XAS)

- Synthesized catalyst materials with the specific catalytic functionalities present in Cu/BEA
 - CuO versus Cu without Bronsted acid sites
 - Bronsted acid sites only
 - Cu(II)-zeolite versus Cu(I)-zeolite with Bronsted acid sites;
 without metallic Cu

Catalytic Testing

Isobutane Dehydrogenation Reaction

- Catalysts containing ionic Cu species exhibit comparable isobutane dehydrogenation activities
- CuO nanoparticles, metallic Cu nanoparticles, and Bronsted acid sites are not active

10

Operando XAS (Argonne National Lab)

Determine speciation of ionic Cu during isobutane dehydrogenation

Cu speciation

- ox-IE-Cu/BEA is ~80% Cu(I) at 2 min TOS and ~100% Cu(I) by 2h TOS
- red-IE-Cu/BEA remains Cu(I) throughout the experiment
- no metallic copper observed

Ionic Cu(I) species are responsible for the observed dehydrogenation activity

Computation: Reaction Mechanism and Energetics

ChemCatBio

Bioenergy Technologies Office

C₄H₁₀ Recycling during DME-to-HCs

Simulated C₄H₁₀ recycle to maximize C₅₊ yield

Mass spectrum of isobutene product

$DME + H_2 + {}^{13}C - C_4 H_{10}$

- Minor decrease in yield with co-fed C_4H_{10}
- Increased C₅₊ selectivity with pressure
- ¹³C-isobutene observed in products
- Confirms dehydrogenation activity over Cu/BEA in the presence of DME + H₂

C₄H₁₀ Recycling during DME-to-HCs

Simulated C₄H₁₀ recycle to maximize C₅₊ yield

Mass spectra of C₅ and C₆ products

- Indicates ${}^{13}C-C_4H_{10}$ reincorporation into C_5 + products

ChemCatBio

Process Design for Biomass to High-Octane Gasoline

BEA: 40 gal/dry-ton biomass; \$5.20/gal **Cu/BEA:** 56 gal/dry-ton biomass; \$4.54/gal

- 13% reduction versus HBEA catalyst, \$0.66 absolute
- 40% increase in yield per dry ton versus HBEA
- Requires high-productivity Cu/BEA and C_4 reactivation at Cu⁺ sites (not HBEA)
- Recall MOGD at \$4.80/gal for gasoline and distillate from biomass

Considering the observed C_4H_{10} conversion

ture Pressure (psig) (%)
3 14.5
25 23.2

- Conversion values are remarkably high compared to the thermodynamic considerations of isobutane dehydrogenation at 200 °C (< 1% expected)
- Suggests that the observed reactivity is kinetically driven, presumably through consumption of the products – isobutene and H₂
 - Similar to product removal concepts that drive methanol/DME synthesis, condensation reactions, etc.
 - Dehydrogenation inside the zeolite pores at ionic Cu sites near H⁺ sites
- Methylation and H-transfer rates of isobutene over HBEA were reported to be 33 and 38 $\mu mol/mol_{Al}/s$
- Our C_4H_{10} conversion rate was 7.2 (3psig) and 11.5 (25psig) $\mu mol/mol_{Al}/s$

Simonetti, D. A.; Ahn, J. H.; Iglesia, E. J. Catal. 2011, 277, 173.

-Conversion of C₁ intermediates (methanol/DME) -Non-FT, non-MTG/MOGD route -Three common fuels from this process -Balance production of each to meet market needs

Distillate production from HOG olefins

Carbon # Range

- Simple vacuum distillation removes unreacted light C₇-C₈
- Carbon numbers are similar to commercial jet fuel (C₈-C₂₀)
- No "heavies" (>C₂₂)

Product meets ASTM specifications for density, viscosity, heat of combustion, freeze point, distillation curve

Incorporating Distillate Production into the TEA model

HOG only (Cu/BEA): 56 gal/dry-ton biomass; \$4.54/gal *HOG and Distillates*:

29 gal-HOG/dry-ton biomass 20 gal-jet/dry-ton biomass \$4.71/gal

- Slight decrease in total yield, minor increase in cost vs HOG-only
 - Adding additional cap-ex to convert only a portion of the product
 - Distillate yield is limited by paraffin:olefin ratio in HOG product
- Recall MOGD at \$4.80/gal for gasoline and distillate from biomass

Summary

Conclusions

- TEA can be coupled with R&D to direct and understand the value of catalyst improvements
- Developed an inexpensive Cu/BEA catalyst with 2-3X improved productivity and extended lifetime
- Cu/BEA reactivates and reincorporates isobutane in the presence of DME + H_2
- Results in 40% increased yield and 13% reduced cost versus HBEA in the process model
- Distillates can be produced, but with additional cost On-going R&D
- Computation suggests Zn(2+), Ga(3+) should be more active for isobutane dehydrogenation than Cu(1+)
- Developing bimetallic catalysts to control P:O ratio in HOG product
 - Control HOG fuel properties and distillate yield

DME-to-Fuels Research Team

Catalyst Development Team

Jesse Hensley Carrie Farberow Eric Nelson Gary Grim Joshua Schaidle Anh To Susan Habas Glenn Powell

Technoeconomic AnalysisEric TanAbhijit Dutta

NREL Fuel Property Analysis Earl Christensen

ANL XAS Collaborators

Ted Krause Jeff Miller

ORNL TEM Collaborators Kinga Unocic

Connor Nash

Dan Dupuis

Matt Yung

Thank you!

Daniel Ruddy Dan.Ruddy@nrel.gov

March 7, 2018

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE