

Technology Options for Catalytically Upgrading Biochemically Derived 2,3-Butanediol from Lignocellulosic Biomass Feedstocks to Advanced Biofuels and Chemical Coproducts

Derek Vardon¹, Zhenglong Li², Vanessa Dagle³

2 CONREL MICHAN REVEWALE EVENOV LABORATORY

April 24, 2019

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE

Project Overview

Catalytic Upgrading of Biochemical Intermediates (CUBI)

- Multi lab effort to develop and evaluate routes for catalytic upgrading of biomassderived sugars/related intermediates into hydrocarbon fuels and co-products
- Facilitate transition from clean sugars (cane and starch-derived) to cellulosic sugars

Upgrading Approach

Process Flow for Biochemically-Derived Intermediates

- Typical biochemical conversion feedstock types are potential high-volume biomass sources (> 500 millions dry tons/year by 2040¹)
 - Agricultural residues (corn stover, wheat straw, etc.)
 - Herbaceous energy crops (switchgrass, miscanthus, etc.)

^{1.} 2016 Billion Ton Report, Vol 2 (Jan, 2017), Figure ES-1. https://www.energy.gov/eere/bioenergy/downloads/2016-billion-ton-report-volume-2-environmentalsustainability-effects

2,3-BDO to Fuel Intermediates and Co-Products

Bioenergy Technologies Office | 4

Research Network for 1,3-Butadiene Production

Butadiene large and growing market (USD \$16.5 billion 2016; forecast USD \$24 billion 2024)¹

Process Research & Development

Identify requirements for catalyst composition, process conditions, and feed purity specifications for efficient, selective, and economic butadiene

Foundational Science Questions

Understand reaction mechanism, limiting step, catalyst active site structure and properties that govern single step dehydration pathway

¹Global Market Insights, Inc.

NREL ChemCatBio

CsH₂PO₄ supported on a commercial SiO₂ validated for high butadiene yield

87% butadiene yield at >90%2,3-BDO conversionunder select conditions

10CsH₂PO₄/SA-SiO₂ (Sigma Aldrich SiO₂)

Conditions: 2.0 g catalyst, 1 atm N_2 carrier gas at 220 sccm, 0.037 mL/min commercial 23BDO, WHSV 1.1 $h^{\text{-1}},\,425^{\text{o}}\text{C}$

Tsukamoto, D.; Sakami, S.; Ito, M.; Yamada, K.; Yonehara, T. Chemistry Letters 2016, 45 (7), 831-833.

Catalyst	Cs loading (wt%)	BET surface area (m ² g ⁻¹)	Pore volume (cm³ g ⁻¹)	Initial 13BDE yield	Butadiene productivity (g _{13BDE} g _{Cs} h ⁻¹)
5CsH ₂ PO ₄ /AA-SiO ₂	2.65	157	0.72	0.9%	0.1
5CsH ₂ PO ₄ /SA-SiO ₂	2.95	407	0.81	47%	6.4
	•	•	•		
5CsH ₂ PO ₄ /SA-SiO ₂	2.95	407	0.81	47%	6.4
10CsH ₂ PO ₄ /SA-SiO ₂	5.13	337	0.76	61%	5.1
20CsH ₂ PO ₄ /SA-SiO ₂	12.4	93	0.46	61%	2.2

Conditions: 2.0 g catalyst, commercial 2,3-BDO, 1 atm He carrier gas, 372°C, WHSV between 0.60-0.75 h⁻¹.

NREL

DFT calculations of energetics and TS

Experimental validation

Epoxide identified as potential intermediate to butadiene

Liquid product identification

Collaboration with Consortium for Computational Physics and Chemistry (CCPC) identified epoxide transformation as rate limiting step

NREL

Cost of supported CsH₂PO₄ catalyst can be reduced by increasing production size, developing alternative high surface area support, and minimizing cesium loading

NREL

Post-catalyst characterization reveals deactivation likely due to coking and support restructuring; initial water exposure may extend time before regeneration

NREL ChemCatBio

Samp	ole	Lacti (g/L)	c Ac (wi	etic t%)	Acetoin (wt%)	G (lycerol wt%)	Eth (g	anol /L)			
Recov Bio-B	vered BDO	ND	1.	22	0.14		ND	N	D			
Mg	Si	Р	S	K	Ca	Fe	Ni	Cu	Zn	Mo	Al	Mn
<1	111	10	158	12	3	<1	ND	ND	ND	ND	7	ND
Samp	ole		Wa	a ter ((wt%)							
Comr	nercial	BDO		1.4	1							
Bio-B	BDO			8.2	2							

Bio-BDO dehydration

Conditions: 2.0 g $10CsH_2PO_4/SA-SiO_2$, 1 atm He carrier gas at 100 sccm, bio-BDO at 0.017 mL/min, WHSV 0.48 h⁻¹, 400°C

Butadiene yield with bio-BDO <10% different from results with commercial 2,3-BDO; Ongoing work to examine long-term impact of impurities

NREL

NREL

2,3-BDO to Distillate and Co-Products

BDO to distillate via *one-step* C₃-C₆ olefin production

Possible reactions to convert 2,3-BDO to olefins in one step

(Zhenglong Li, ORNL)

Hierarchical Cu/pillared-MFI for 2,3-BDO to Olefins

Journal of Catalysis 330 (2015) 222-237

Catalyst and Process Improvements

Pillared MFI

- Maximize C₃-C₆ olefins selectivity
- Enhance catalyst stability —coke resistance

Hierarchical 2D pillared MFI as a potential candidate to mitigate coke formation Nature, 2009, 461, 246-249. Diffusion Length > OH Characterization Diffusion Length Solution Comparison Com

Microporous ZSM-5

- -----

- 2D pillared MFI:
- Reduce coke formation
- Minimize tertiary cracking products, e.g., propene, pentene

ORNL

Cu/P-MFI Synthesis and Characterizations (ACSC)

Catalyst synthesis: ammonia evaporation *As-synthesized catalyst after calcination:* CuO nanoparticles

Majority Cu⁰, minor Cu⁺ exists: 300 °C, H₂ for 1 hr

Kinga Unocic (ORNL)

Cu/P-MFI for C_3 - C_6 Olefins from 2,3-BDO

<u>Objective</u>: Maximize C_3 - C_6 olefins and optimize olefin compositions

• Temperature and H₂/BDO effect

- Optimum C_3 - C_6 olefins: above 250 °C
- Tune MEK/olefins ratio by varying reaction temperatures
- H₂/BDO ratio below 15, olefin composition dramatically changes, butenes decrease

Outcome:

- Final co-product/fuel ratio can be tuned by varying the reaction temperatures
- Tune olefins/fuel composition by varying H₂/BDO ratio in the range of <15

140

160

Cu/P-MFI durability testing for 2,3-BDO conversion

- Catalyst can be completely regenerated via calcination under air
 - Reversible catalyst deactivation
- 2D pillared MFI vs 3D ZSM-5 (preliminary)
 - Less tertiary products (cracking: C3, C5)
 - Slower change of product selectivity
 - Better coke resistance

2D pillared MFI vs 3D microporous ZSM-5

ORNL

Conversion of fermentation derived 2,3-BDO (vacuum distillation)-preliminary

• Fermentation broth (NREL)

Composition	Amount	Composition	Amount
Cellobiose	2.606 g/L	BDO	33.013 g/L
Xylose	8.408 g/L	Acetoin	20.216 g/L
Arabinose	2.643 g/L	Ethanol	0.226 g/L
Glycerol	2.175 g/L	Lactic Acid	0.527 g/L
Xylitol	2.986 g/L	Acetic acid	0.523 g/L

• Primary composition of fermentation derived 2,3-BDO (vacuum distillation)

Composition	Amount,	Composition	Amount,
	wt.%		wt.%
Water	20	Acetic acid	1
BDO	75	Acetoin	2

Other impurities: propanoic acid, butyrolactone, and other organics (GCMS)

- Fermentation derived BDO can be converted to C₃-C₆ mixed olefins with selectivity more than 90%
- Impurities in the vacuum distillation derived BDO have no influence on catalyst performance
- Focus on impurities impact--BDO obtained from different separation approaches

Distillate Production from C₃-C₆ Olefins

C ₃ -C ₆ (butenes	olefins dominate)	Oligomerization	Hydrogenation	Diesel/ Jet	T	ORNL BDO derived distillate
	Jet A	BDO derived jet	100 -			
Density (g/mL)	0.775- 0.84	0.798	% 80 - ₩			MEK Heavy Diesel
HHV (MJ/Kg)	46.2	46.7	Vielo			
Freezing Point (°C)	max -40	<-80	40- arbor			Jet
Aromatics (v/v %)	max 25%	<<25%	20-			Gasoline
Preliminary fu	el analysis [.]	meet let A	0 ⊥ BI	DO Feed	Product	t

High overall carbon efficiency:

~94% carbon in final fuels and products

- Preliminary fuel analysis: meet Jet A properties (NREL)
- Mainly C₈-C₁₆: iso-paraffinic
- Wide HCs distribution: odd carbon No.

<u>Outcome</u>:

- BDO derived jet fuel meets preliminary fuel analysis criteria
- High distillate yield can be obtained from 2,3-BDO conversion

ORNL

TEA – Guided Future R&D for 2,3-BDO Upgrading

- TEA sensitivity analysis to guide future R&D work
- Design report (NREL/TP-5100-71949) on Conversion of Biomass to Fuels and Products via 2,3-BDO pathway

Identified research areas for catalytic process improvements:

- Divert 2,3-BDO to value-added co-product (e.g., MEK) for <\$3.0/GGE
- Reduce 2,3-BDO upgrading temperature for liquid phase upgrading
- Improve catalyst stability against impurities to reduce the load of separation

NREL

2,3-BDO upgrading to Fuels and Co-Products

A two-step approach for upgrading 2,3-BDO to Olefins fuels precursors

Feedstock : 2,3-BDO in H₂O

• Eliminate need for challenging 2,3-BDO/H₂O separation

Flexible catalysts choice

- non-zeolite catalysts "work"
- No dealumination issue under H₂O environment

Does not require H₂

- 2,3-BDO to C_2 - C_6 olefins w/o H_2 is possible
- Still requires H₂ for hydrogenation of olefins to paraffins

Mixed oxides catalysts enable efficient conversion of $2,3-BDO/H_2O$ to MEK

Background:

- Pure 2,3-BDO to MEK: "facile" over zeolites
- MEK sel. ~80-90%
- Isobutyraldehyde (IBA) sel. 10-20%
 - \rightarrow by-product less desired

Catalysts screening

Feed:10 wt. % 2,3-BDO in water, T = 250°C, W/F = 0.6-0.7 g.s.ml⁻¹

A mixed oxides catalyst was identified for selective conversion of 2,3-BDO

98% conversion 95% sel. desired products, 82% sel. MEK 3% sel. IBA

Opportunity for co-products diversification:

isobutanol HO

Market: USD 1.18 billion/2022 CAGR: 6%

 $Zn_xZr_yO_z$ catalysts are efficient for direct conversion of MEK/H₂O into C₄-C₅ olefins with and without H₂

ZnxZryOz catalysts

- single-step MEK $\rightarrow C_4$ -C₆ olefins
- (non) aqueous feedstock

	GHSV (hr ⁻¹)	Conversion (%)	Olefins Sel. (%)
ZnO	93	46.9	14.2
ZrO ₂	603	48.3	7.4
Zn ₁ Zr ₁₀ O _x	2467	48.2	51.8

Feed:10 wt. % MEK in water, T = 400°C, P = atmosphere, inert N₂ atmosphere

Operating with H₂ is not required but preferred.

Higher conversion and selectivity

 \rightarrow higher carbon efficiency

Aqueous MEK vs. Pure MEK: H_2O inhibits coking but desired olefins production is lower

MEK conversion (%)

Flexibility in feedstock water content with Zn_xZr_yO_z catalysts

- MEK upgraded into olefins with and w/o H₂O
- Higher olefins yield with pure MEK

Higher MEK concentration is preferred to obtain higher yield but water helps preventing deactivation due to coking

*ACSC: Advanced Catalysts synthesis and Characterization- enabling project within ChemCatBio

ChemCatBio

Bioenergy Technologies Office | 24

Upgrading of 2,3-BDO to high quality distillate fuels via MEK intermediate

This process for 2,3-BDO upgrading to fuels allows high carbon efficiency.

What's next :

- Testing with real fermentation broth
 NREL hydrolysate broth 10% 2,3-BDO in water
 Determine impact of impurities on
- Determine impact of impurities on catalyst activity & lifetime
 - glycerol, sugars, acids

Distillation profile and freezing

PNNL

90% in distillate range freezing point < -70 °C

Oligomerized Olefins:

A two-step approach for upgrading 2,3-BDO to butadiene

In₂O₃ catalyst lifetime advantage

2nd– step MVC to BD is quantitative

In_2O_3 catalyst for 2,3-BDO conversion to MVC, intermediate to BD

Background:

- 40 catalysts screened using high throughput system
- In₂O₃ chosen: high MVC sel. over MEK
- 2nd step (MVC to BD) is quantitative

Regeneration improves longevity

In₂O₃ catalyst is easily & completed regenerated

- Regeneration under air 450°C

Better MVC selectivity at lower temperature

High yield toward desired MVC70%Sel. at >90% conv

- MEK: only 2-3% Sel.
- Coking occurs at both temperatures

PNNL

Steaming treatment affects the activity of In_2O_3 for 2,3-BDO conversion to MVC

- Activity and selectivity appear to be closer to steady state following steaming
- Conversion levels off after about 24 h
- High initial activity? Needs to be verified, but might suggest steam could open up or regenerate sites.

BDO dehydration over In₂O₃ at 300 °C

Activity of 1st generation In₂O₃ is high but surface area is low (8 m²/g)

			Pore
			Volume
	Surface	Micro Pore Surface	(BJH
Samples	Area (BET)	Area (T method)	method)
	m²/g	m²/g	cc/g
Used*	7.5	1	0.09
Fresh	8.0	0.7	0.12

*after >300 hrs on stream and regenerated 4 times

High surface area In_2O_3 catalyst for 2,3-BDO conversion to MVC, intermediate to BD

2nd generation In₂O₃ presents high surface higher (>100 m²/g) and higher selectivity to MVC at similar conversion

In₂O₃ Catalysts screening surface area (m2/g) 2,3-BDO conversion (%) 111.8 Surface/ 106.8 area MVC Sel. (%) 91 88 MVC Sel. 61 51 40 0 1st 2nd Double Generation Generation lavered hydroxide ln_2O_3 ln_2O_3 In₂O₃

- 1st and 2 nd generations catalysts present same bulk structure

Catalytic upgrading of 2,3-butanediol to butadiene via MVC intermediate

- This process for 2,3-BDO upgrading to butadiene allows high carbon efficiency.
- Catalyst longevity demonstrated for >100 hours

What's next :

- Testing with real fermentation broth
- Determine impact of impurities on catalyst activity & lifetime
 - glycerol, sugars, acids

PNNI

Summary

Evaluate <u>several routes</u> for <u>catalytic upgrading of 2,3-butanediol</u> into hydrocarbon fuels and coproducts with select routes that can achieve <u>\$3/gge in 2022</u>

<u>Approach</u>

- Common/shared:
 - –Process materials
 - -Analytical methods
 - -Reactor systems
 - -Fuel assessment
 - TEA tools and approaches
- Integrated task structure
- Biochemical Platform leveraging for process intermediates
- Go/no-go decision used to identify catalyst and process improvements

Accomplishments

- Coordination with enabling ChemCatBio projects for advanced characterization, catalyst cost modeling, and computational chemistry
- Validated single step route to butadiene, with insights into reaction mechanism (NREL)
- Developed stable Cu/P-MFI for one-step conversion to C₃-C₆ olefins, which can be upgraded to jet fuel (ORNL)
- Developed 2-step processes for 2,3-BDO upgrading to olefins fuel precursors and butadiene (PNNL)

<u>Relevance</u>

- Addresses key commercialization barriers associated with biochemical conversion streams
- Developing comparative data and TEA on several approaches
- ChemCatBio collaborations and industry outreach

Future Work

- Continued catalyst and process improvements to increase target yields
- Focus on inhibitor identification and mitigation for catalyst lifetime
- Inform upstream separation and recovery efforts for lignocellulose-derived 2,3-BDO

Acknowledgements

www.cpcbiomass.org

Energy Efficiency & Renewable Energy

Bioenergy Technologies Office Nichole Fitzgerald Jeremy Leong

Y. Kim

L. Tao

J. Stunkel

- F. Baddour
- X. Chen
- D. Conklin
- R. Davis
- s M. Tucker
- N. Dowe W. Wang
- R. Elander
- X. Huo
- E. Jennings
- R. Katahira
- S. Kim

- S. Adhikari
- K. Unocic
- T. Krause (ANL)
- E. Wegener (ANL)
- C. Yang (ANL)
- J. Zhang
- M. Hu
- M. Lu
- S. Majumdar
- J. Parks
- T. Toops

K.Ramasamy M. Lilga M. Flake T. Lemmon A. Martinez S. Subramaniam M. Swita