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Biochemical Process 
Modeling and Simulation

BioPower

• Accelerating 
catalyst/enzyme 
discovery for 
bioenergy 
conversion

• Optimizing 
process design 
for complexity 
associated with 
biomass 
feedstocks and 
products

• Enabling process 
integration and 
intensification 
via optimal 
coupling of 
catalysis and 
separation 
functions

www.cpcbiomass.org

A Multi-Scale Problem …
A Multi-Lab Solution
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www.cpcbiomass.org

Atomic Scale 
Catalysis Modeling

Meso Scale 
Particle Modeling

Process Scale Reactor 
Modeling

Understanding mass transport of 
reactants/products, reaction 

kinetics, and coking and 
deactivation processes

Investigating novel catalyst material 
combinations and understanding 

surface chemistry phenomena to guide 
experimentalists

Determining optimal 
process conditions for 
maximum yield and 
enable scale-up of 

ChemCatBio catalysts
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Atomic Scale 
Catalysis Modeling

Investigating novel catalyst material 
combinations and understanding 

surface chemistry phenomena to guide 
experimentalists

Dr. Seonah Kim (NREL)
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Guiding compositional catalysis design utilizes multiple atomistic 
toolsets

5

Atomistic simulations using static to dynamic models to support ChemCatBio: 
– Understand catalyst activity and yield selectivity as a function of 

composition 
– Guide new catalyst compositional synthesis (ACSC) 
– Optimize operating conditions

(MD)

Catalyst-
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Atomistic modeling is useful in a variety of ways
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Modeling dopants to tailor product 
selectivity and balance multi-

functional catalytic activity

Exploring molecular-scale 
transport

Exploring catalytic cycles and nature 
of active sites to identify 

structure/function relations

Screening catalysts to guide new 
syntheses

worse

Candidates 
to test

Design
Performance-
Advantaged 

Catalysts
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Developing a holistic view of inverse bimetallic catalysts for 
selective carboxylic acid reduction
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Vardon et al., ACS Catal., 2017, 7 (9), 6207-6219
Vorotnikov V, Eaton T, et al., in prep.
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A

NREL
Catalytic testing

• Rationalizing catalyst stability

• Probing mechanisms for carboxylic acid 
reduction

• Evaluating XPS- and EXAFS- informed surfaces 
for selective reaction pathways

• Providing tunable design parameters

Molecular level understanding
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• Predicting surface composition using equilibrium thermodynamics

• Discerning activation energy differences in aldol condensation of 2- and 3-pentanone 
over MgO surfaces

• Providing mechanistic insight into the role of water, hydroxyls to understand water 
tolerance

Mingxia Zhou, Rajeev S. Assary, Larry A. Curtiss (ANL)/ Vassili Vorotnikov, Derek Vardon 

Understanding water deactivation of metal oxide catalysts 

8

Mg(OH)2

Mg(OH)2-H2O*

Mg(OH)2
-substrate*
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Rate-determining step

Considering the enthalpy and entropy contribution towards Gibbs 
free energy is critical for studying the ethanol upgrading over zeolite

Thermodynamic Profile of Ethanol Upgrading

• Incorporation of entropy not only leads to 
different thermodynamic landscape, but also 
identifies the rate-determining step.

• Thermodynamic profiles of rate-determining step 
can further be tuned by increasing the number of 
BAS and lowering the operating temperature.

Internal Pore External Pore

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄∗ + 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄(𝐠𝐠) ↔ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄_𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜∗

Simuck Yuk, Roger  Rousseau (PNNL
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Diffusion in microporous and mesoporous catalysts
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Diffusion in zeolites can impact coke formation, longevity of the catalyst, product selectivity, yields and separations.

p-xylene and toluene diffusion in microporous H-ZSM-5 (Bu, JPCC, 2017)

benzene diffusion in mesoporous H-ZSM-5 
(Bu, Catalysis today, 2018)

p-xylene toluene

DS (10-10m2/s,700K) Micropore Mesopore (20Å) Mesopore (60Å)
benzene 0.74 ± 0.20 107 ± 15 260 ± 21
naphthalene 0.04 ± 0.01 40 ± 12 92 ± 14
anthracene 0.02 ± 0.01 17 ± 6 30 ± 7

Characterize the diffusivities of coke precursors in microporous and mesoporous H-ZSM-5



Bioenergy Technologies Office  |

Coke formation via ReaxFF MD Simulation

polyyne formation chain growth ring formation PAH formation
 Composition of coke formed inside zeolite and on the external surface might be different.
 Microporous topology confine the rearrangement of branched chains to form aromatic rings.

11

Lintao Bu (NREL
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Meso Scale 
Particle Modeling

Understanding mass transport of 
reactants/products, reaction 

kinetics, and coking and 
deactivation processes

Dr. Peter Ciesielski (NREL)
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Intra-particle 
diffusion

Extra-particle 
diffusion and 
convection

Observed 
reaction rate

Intrinsic reaction 
kinetics

Experimentally observed “effective” catalytic reaction rates are dependent 
on system-specific parameters (particle size, porosity, flow, etc.)
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Constructing accurate mesoscale models requires detailed structural 
characterization to parameterize the particle geometry and transport models 

14

10 nm

5 µm

250 µm

Partially Deactivated 
Catalyst Particle Interior

Light micrograph: B. Donohoe

TEM micrographs: P. Ciesielski

HZSM5 Zeolite Particle

XCT Data: B. Kappes, Colorado School of Mines; TEM Data: P. Ciesielski, NREL
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Particle porosity captured by XCT characterization forms basis for 
particle model

15

• Porosity is present in 2 distinct, localized regimes
• These results were used to parameterize approximations 

for transport in porous media (Darcy’s Law) in each regime

Experimental Characterization via XCT

XCT Data: B. Kappes, Colorado School of Mines

Fluid domain

High porosity 
region

Low porosity 
region

Particle Model with Two 
Distinct Porosity Zones
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Simulation results with optimized kinetic parameters

16
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• Electron microscopy coupled 
with quantitative elemental 
analysis is being used to 
validate the particle coking 
model

• Catalyst particles that have 
been coked to different 
degrees have been imaged

• Coking differences as a 
function of particle radial 
distance are observed

• Ongoing effort which is 
complicated by variety of 
particle shapes and 
characteristics continues

Validation of model coking results with microscopy and elemental 
analysis

17

Characterization by the Advanced Catalyst Synthesis & Characterization Project;  Kinga Unocic (ORNL)

Si

C

O

C concentration
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Modeling Structural Hierarchy in Catalytic Systems:
SBA-16 Mesoporous Silica Catalyst Supports  

18

Bharadwaj, Pecha, Bu, Lebarbier-Dagle, Dagle, and Ciesielski. Under review 
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Modeling Structural Hierarchy in Catalytic Systems:
SBA-16 Mesoporous Silica Catalyst Supports  

19

Bharadwaj, Pecha, Bu, Lebarbier-Dagle, Dagle, and Ciesielski. Under review 

Atomic/Molecular Scale: Molecular Dynamics studies of reactants and products were 
performed in atomic models of SBA16 nanostructure to compute diffusion coefficients 
in each domain of the support  

DS (10-10 m2/s) MD (bulk) MD (pore)
Ethanol 106.0 ± 2.0 37.6 ± 2.7
Butadiene 62.5 ± 1.2 21.8 ± 2.0

21 lim ( ) (0)
6s t

dD r t r
dt→∞

= −
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Modeling Structural Hierarchy in Catalytic Systems:
SBA-16 Mesoporous Silica Catalyst Supports  

20

Bharadwaj, Pecha, Bu, Lebarbier-Dagle, Dagle, and Ciesielski. Under review 

Mesoscale: Diffusion coefficients from MD were used in explicit models for the pore 
structure of SBA16 to compute effective bulk diffusion coefficients. This enables 
implicit consideration of transport effects inherent to the SBA-16 microstructure in 
reactor-scale simulations. 

i domain iJ D C= ∇⋅

*i
eff

i

J xD
C
∆

=
∆
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Modeling Structural Hierarchy in Catalytic Systems:
SBA-16 Mesoporous Silica Catalyst Supports  

21

Bharadwaj, Pecha, Bu, Lebarbier-Dagle, Dagle, and Ciesielski. Under review 

Macroscale: The effective diffusion coefficients obtained from mesoscale models were  
used to model packed bed experiments performed by experimental partners at PNNL. 
The simulation was used to extract reaction kinetics from the experiments. 
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Modeling Structural Hierarchy in Catalytic Systems:
SBA-16 Mesoporous Silica Catalyst Supports  
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Bharadwaj, Pecha, Bu, Lebarbier-Dagle, Dagle, and Ciesielski. Under review 

Macroscale: The calibrated model was used to perform sensitivity analysis of 
experimentally adjustable parameters. Actionable recommendations were provided to 
experimental partners to improve performance. 

The results suggest that reducing the 
particle size and increasing the pore size of 
SBA-16s should result in improved catalyst 
activity lifetimes.
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Process Scale Reactor 
Modeling

Determining optimal 
process conditions for 
maximum yield and 
enable scale-up of 

ChemCatBio catalysts

Dr. Jim Parks (ORNL)
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Process Scale Modeling Utilizes MFiX

24

R-Cubed Catalytic 
Upgrading Reactor at NREL

MFiX CFD reactor models capture 
residence time and mixing effects

CFD and reduced order 
models inform BETO 

reactor teams; 
experiments validate 

model results

MFiX model of R-Cubed Catalytic Upgrading Reactor

MFiX (Multiphase Flow with Interphase eXchange) is a 
computational fluid dynamics (CFD) code developed by NETL
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Experiments and modeling conducted across range of reactor 
scales to aid in ChemCatBio catalyst scale up

Computational 
Domain in Red

2” Fluidized Bed 
Reactor

Upgrader*

Davison 
Circulating Riser 

(DCR)        
Reactor*

TCPDU R-Cubed Upgrader*

0.5 
kg/hr

2 
kg/hr

15 
kg/hr

*All (3) Reactors at NREL

WR Grace

PSRI (redesign)

Relevant to 
new BETO 
catalysts

Relevant to 
Industry

Relevant to Scaled-Up 
Verification
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277 in

3.6 in

Riser

• MFiX simulations used to capture critical 
residence time distributions for catalytic 
upgrading reactors

• Mean Residence Times:
- 2”FBR Vapor Phase Upgrader: 883 sec 

(650 micron catalyst)
- R-Cubed Riser: 139 sec (85 micron 

catalyst)
• Models can be used to compare conversion 

processes across a range of scales to enable 
scale up of ChemCatBio developed catalysts

Residence Time Distributions Vary with Reactor Design

+0.1 s +0.2 s +0.4 s +0.6 s +0.8 s +1.0 s +1.5 s +2.0 s +2.5 s +3.0 s

Model of 2” 
Fluidized Bed 
Reactor Vapor 

Phase Upgrader

0.5 
kg/hr 15 

kg/hr

Model of TCPDU R-
Cubed Riser

ORNL (CCPC): C. Finney, E. Ramirez, G. Wiggins, J. Parks
NETL (CCPC): B. Rogers, M. Syamlal, T. Li, X. Gao
NREL (experimentalists): K. Iisa, R. French, K. Smith, K. Gaston, D. Carpenter

feed rate
feed rate

4.6 in
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• Kinetic rates for catalytic upgrading of bio-specific oils are critical for models to 
predict conversion and yield

• Micro-Kinetics approach being pursued by universities (Northwestern Univ. - L. 
Boradbelt, Univ. of Delaware – M. Klein) is chemically comprehensive but 
computationally complex for bio oils

• Our approach: determine kinetic rates for grouped chemical products with 
specifically designed experiments and analysis

Kinetics: Critical to Predicting Conversion at Process Scale 

27

Kinetic Reaction Scheme and Rate Constants for Pine  
Pyrolysis Oil Upgrading with a ZSM-5 Catalyst

Reaction Rate Constant @500 °C 

[m3/(mol.s)]

1 PV + S1  HC + S1 139.262

2 PV + S1  CK + S2 40.876

3 PV + S2  FP&N + S2 1.158

4 PV + S2  CK + S3 69.79

5 HC + S2  CK + S3 2.751

6 PN + S2 -> CK + S3 0.024

Preliminary Results
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Close collaboration between experimentalists and modelers enables 
kinetic rate parameters to be determined

28

Pyrolysis 
oven

He

Pyrolysis vapors

Upgraded products

Spouted 
bed with 
catalyst 
particles

Milled
Pine

Experiments performed and analyzed by Calvin Mukarakate (NREL)

MBMS 
detector

Initial Guess FEM simulation

External optimization routine

10

• Species
• Experimental Yields

• Porosities
• Diffusivities
• Architecture
• Reaction Scheme

• Kinetic Rate Parameters

Reaction Pathway with Kinetic Rates

Experiment conducted in spouted bed 
reactor to capture product groups

Kinetic rates extracted by using particle scale 
model to analyze data and extract rates



Bioenergy Technologies Office  |

• Preliminary results 
obtained with MFiX
model of R-Cubed riser 
with kinetic rates for 
pyrolysis vapor 
conversion to grouped 
products

• Current research focus 
is experimental 
validation of both 
hydrodynamics and 
catalytic conversion

Kinetics incorporated into R-Cubed reactor model

29

Pyrolysis 
Vapors Hydrocarbons

Furans,
Phenols, &
Naphtols

Coke
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Validation of R-Cubed Model: Ongoing Experiments

30

0

100

200

300

400

500

600

700

0 100 200 300 400

PD
IT

 7
00

, P
a

Solid circulation rate, lb/hr

Exp. Test 1 (May 11, 2018)

Exp. Test 2 (May 18, 2018)

Sim.-with turbulence

Sim.without turbulence

• Experimental matrix 
performed by reactor team on 
R-Cubed system with inert 
process gas

• Matrix included varying 
catalyst flow, temperature, etc.

• Pressure data utilized for 
validation of model

• Initial heterogeneous Sarkar 
drag model did not provide 
accurate model prediction

• Determined that Wen-Yu 
homogeneous model was 
more accurate

• Experiments are ongoing 
including upcoming 
experiments with pyrolysis oil 
upgrading
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• Modeling support of ChemCatBio research is occurring across wide 
range of scales
- Atomic scale modeling of surface chemistry
- Meso scale modeling of particle scale effects
- Process scale modeling of conversion in reactors

• Close collaboration with experimentalists is critical to all modeling 
activities

• Preliminary kinetics developed specific to bio oil conversion and 
incorporated into process models
- This critical activity can enable translation of ChemCatBio catalysis success to 

larger scales relevant to industry
- Validation ongoing with experimental reactor teams

Summary

31
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Experimentally observed, “effective” catalytic reaction rates are 
highly dependent on system-specific parameters

34

Intra-particle 
diffusion

Extra-particle 
diffusion and 
convection

Observed 
reaction rate

Intrinsic reaction 
kinetics

If transport phenomena are 
not accounted for, extracted 
kinetics are not extensible 
to other systems



Bioenergy Technologies Office  |

Mesoscale simulations can be used to extract reaction kinetics 
that are independent of system-specific parameters

35

• By “turning off” transport physics in 
the simulation, we can evaluate 
their affect on product evolution 
rates 

• Transport phenomena can delay 
effective catalytic conversion rates 
by orders of magnitude

• Once transport-independent kinetics are 
obtained,  the impact of catalyst 
parameters such as particle size and 
porosity can be investigated
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