

Single-Step Catalytic Conversion of Ethanol to n-Butene-rich Olefins and 1,3-Butadiene Chemical Coproduct

Robert Dagle¹, Vanessa Dagle¹, Zhenglong Li²,

July 31, 2019

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE

- PNNL and ORNL have developed effective catalysts and processes for conversion of ethanol to fuels and co-products.
- We present a flexible catalytic process for the single-step conversion of ethanol to either **butadiene** or **n-butenes** using a mixed oxide catalyst (PNNL).
- We present the catalytic processing for producing either C₅₊/BTX hydrocarbons or C₃₊ olefins using zeolite catalysts (ORNL).

n-Butene Uses

ChemCatBio (CCB) is a national-lab led R&D consortium dedicated to overcoming catalysis challenges for biomass conversion

- ChemCatBio is a node in DOE's Energy Materials Network.
- It strives to accelerate the development of catalysts and related technologies for the commercialization of biomass-derived fuels and chemicals by leveraging unique capabilities of the US DOE national laboratories.
- The team comprises over 100 researchers from 8 national labs and has published more than 90 peer-reviewed manuscripts over its four years of operation.

Advanced synthesis and Characterization

Analysis and Simulation

Evaluation across Scales

- Ethanol is commercially produced from renewable biomass & waste sources.
- Current trend positive to future competitive ethanol production:
 - Ethanol "blendwall"
 - Advancement in production efficiency
 - Feedstock diversification

ACS Catal. 2014, 4, 1078-1090

PNNL & ORNL have found effective processes for converting ethanol to fuels and co-products

Bioenergy Technologies Office

Single-step conversion of ethanol to isobutylene leads to the unavoidable formation of CO₂

Isobutylene production from ethanol is limited due to formation of CO₂

ChemCatBio

Bioenergy Technologies Office

Butadiene uses, production technologies, and market outlook

Butadiene Production: 11 MT/Year.

Butadiene Uses: synthetic rubbers, elastomers, polymer resins.

Production technologies

- Extraction from C4 hydrocarbons- ethylene steam cracker (SC)
 - BD is a by-product
 - 95% BD production
- Dehydrogenation of n-butane & n-butene
- Processing of renewable sources

Market outlook

- The quantity of BD produced from SC depends of cracking feedstock.
- Low cost ethane obtained from shale gas is the preferred feedstock in USA .
 - Decline of BD co-production

Producing butadiene from ethanol can be cost competitive with current butadiene prices, with sufficiently low cost ethanol

e.g. \$1.50/gal ethanol feedstock → \$0.68/lb Butadiene selling price (~ current market price)

ChemCatBio

Bioenergy Technologies Office | 8

PNNL Designed an Ethanol to Butadiene Catalyst with 1.5x Yield Over State of the Art on Ag/ZrO₂/SiO₂

- Historically, ethanol to butadiene catalyst yields low
- Ag/ZrO₂/SiO₂ multifunctional catalyst system developed that selectively enables single-step conversion of ethanol to butadiene
- Significantly more active than literature benchmark catalyst
- Produces butadiene with 89% ethanol conversion and 74% selectivity

Catalyst	Temperature (°C)	WHSV (hr-1)	Conversion (%)	Butadiene selectivity (%)	Butadiene yield (%)
PNNL formulation ¹	325	0.47	89.2	73.6	61.5
Literature benchmark ²	320	0.3	55.2	71.3	39.4

Feed: pure ethanol, 320-325°C, P = 1 atmosphere, 50% ethanol/N₂, WHSV = 0.3-0.5 hr⁻¹

¹ Dagle, V. L. et. al. *Applied Catalysis B* 2018, *236*, 576–587.

² Ivanova et. al., E. *J. Catal.* 2014, *316*, 121–129.

We found SBA-16 to be the Best SiO₂ Support for Ethanol to Butadiene over Ag/ZrO₂/SiO₂

SiO ₂ support	Conversion (%)	Butadiene selectivity (%)	Lewis acid sites (µmoles/g)	
SG Davisil 636	82.7	65.2	32.2	
SG Alfa Aesar	48.7	29.3	35.0	
SG Davisil 646	76.1	75.3	22.8	
SG Davisil 645 After ion- exchange	29.5 79.6	41.6 73.4	21.6 27.8	
SG Davisil 923	84.8	56.8	31.0	
SG KSKG-GOST- 3956-76	84.7	78.3	26.1	
SG KSMG-GOST- 3956-76	100.0	0.0	NA	
Fumed silica Cabosil EL90	37.1	39.2	NA	
Fumed silica Aerosil 380	39.2	29.6	5.0	
SBA-15	97.8	46.6	NA	
SBA-16	99.0	70.5	26.4	

1Ag/4ZrO₂/SiO₂ activity. WHSV: 0.23hr⁻¹, P_{EtOH}: 24.3% in N₂, P: 1 atm, T: 325°C.

- Screened catalysts using SiO₂ with different properties (e.g. surface area, porosity)
- Greatly influenced activity and selectivity to butadiene

The choice of SiO₂ support is key in effective catalyst design for butadiene production

Dagle, V. L. et. Al. Applied Catalysis B 2018, 236, 576–587

Mechanism & Role of Catalyst Components were Confirmed over this Catalytic System

Intermediate Species

- Both acetaldehyde and crotonaldehyde are intermediates involved in BD formation
- Conversion and selectivity profiles supports the aldol condensation mechanism followed by MPV reaction.

Role of Ag, ZrO₂, and SiO₂

- ZrO₂ acid sites are responsible for undesired ethanol dehydration to ethylene and DEE
- Ag responsible for the dehydrogenation of ethanol to acetaldehyde
- Addition of ZrO₂ to Ag/SiO₂ does not have a significant impact on the conversion

Dagle, V. L. et. Al. Applied Catalysis B 2018, 236, 576–587.

T=325°C, P= 1 atmosphere, WHSV = 0.37-38.0 hr⁻¹, 50% Ethanol/N₂

Catalyst	EtOH Conv.	Selectivities (%)				
	(%)	C ₂ =	DEE	BD	AcH	
SiO ₂	7.2	26.4	2.2	0	69.6	
4ZrO ₂ /SiO ₂	14.8	47.9	46.9	0	2.6	
4Ag/SiO ₂	88.3	1.5	0.1	0.9	61.4	
4Ag/4ZrO ₂ /SiO ₂	89.2	5.5	3.0	73.6	6.7	

T = 325°C, P = 1 atmosphere, WHSV = 0.47 hr⁻¹, 50% EtOH/N₂ SiO2: Davisil 646

PNNL

SiO₂ Support Affects Surface Area, Ag Dispersion, and Subsequent <u>Ethanol Conversion</u>

- Addition of ZrO₂ to Ag/SiO₂ does not have a significant impact on the conversion
- Conversion increases with catalyst surface area
 - Same Ag loading of 1% for all catalysts

Catalyst	Conversion (%)
SiO ₂	7.0
4ZrO ₂ /SiO ₂	14.8
4Ag/SiO ₂	88.3
4Ag/4ZrO ₂ /SiO ₂	89.2

T = 325°C, P = 1 atmosphere, WHSV = 0.47 hr⁻¹, 50% EtOH/N₂. SiO2: Davisil 646

1%Ag/4%ZrO₂ – varied SiO₂ supports

Increase in conversion is due to increased Ag dispersion

PNNL

Dagle, V. L. et. Al. Applied Catalysis B 2018, 236, 576–587

SiO₂ Support Interaction with ZrO₂ Affects Catalyst Acidity and Subsequent Butadiene Selectivity

- Presence of Lewis acid sites
- Butadiene selectivity decreases as Lewis acid site concentration increases
- Evidence of a relationship between butadiene selectivity and acid sites concentration.

The interaction between ZrO_2 and SiO₂ varies greatly depending on the SiO₂ support which affects the quantity of the acid sites and the butadiene selectivity

Dagle, V. L. et. Al. Applied Catalysis B 2018, 236, 576–587

Ag Particle Size Affects Selectivity in Ethanol to Butadiene Reaction

CCPC

Two DFT models considered:

- Dispersed Ag representative of <u>small Ag particles</u>
- Ag nanoparticle (NP) surface representative of larger Ag particles

DFT calculations suggested:

- Larger Ag particles → favor ethylene
 formation through ethanol dehydration
- Smaller Ag particles → favor formation of acetaldehyde for butadiene
- Experimental Results Validate Calculated DFT Trends

Greater Ag dispersion inhibits the formation of dehydration side products

CCPC: Consortium for Computational Physics and Chemistry ChemCatBio

DFT Calculation Results

Catalyst	∆G ethylene	ΔG acetaldehyde
Dispersed Ag/ZrO ₂ /SiO ₂	1.93	-2.69
NP Ag/ZrO ₂ /SiO ₂	-0.74	-0.63
ZrO ₂ /SiO ₂	-1.36	-

Experimental Results

Single step formation of butenes from ethanol over Ag/ZrO₂/SiO₂ is observed under reducing conditions

A Flexible Process for Production of Butadiene or Olefins fuels Precursors

		Selectivity (C mol %)								
Feed	Conv (%)	C₂=	C ₃ =	C ₄ = Butadiene		DEE	C ₂ -C ₅ alkanes	Оху	Total Olefins + DEE	
EtOH in inert	99.0	5.8	2.8	11.2	70.5	2.6	3.4	3.7	92.9	
EtOH in reducing environment	93.9	25.7	2.0	57.7	0.0	6.0	6.1	2.5	91.4	

- Butadiene formed in inert environment
- Butene-rich olefins formed in reducing environment
- Olefin double bonds remain even under reducing environment, provided suitable catalyst and processing conditions.

Impact: Producing butene-rich olefins directly from ethanol reduces a unit operation thereby representing a major improvement to the state of the art.

PNNL

Butenes mostly produced from butadiene intermediate

Preliminary operando NMR & catalytic performance:

- n-Butenes are formed through butadiene intermediate at high conversion
- Also through butyraldehyde at low conversion

Possible Pathways

PNNL

Operando NMR confirmed n-butenes also produced from butyraldehyde

Possible Pathways

Butyraldehyde identified as an intermediate

- Product evolution confirms butyraldehyde pathway
- Peaks characteristic of butadiene seen in high conversion experiments

ChemCatBio

Makshina, E. V. et Al. Chem. Soc. Rev. 2014, 43 (22), 7917-7953.

Lifetime study shows Ag/ZrO₂/SiO₂ exhibits higher degree of stability under reducing environment

- Coking problematic under inert environment (butadiene) but catalyst regenerable
- Conversion stable for up to 180 hours under reducing environment (butenes)

Catalyst treatment	Total carbon weight (%)	Ag° particle size (nm)
Reduced	0.02	2.9
Spent-reducing atmosphere	2.38	3.9
Spent – inert atmosphere	5.47	4.3

Total carbon weight and Ag^o particle size after lifetime studies vs. reduced catalyst. Particle size derived from TEM images and XRD.

PNNL

*ACSC: Advanced Catalyst Synthesis and Characterization

Product selectivity under reducing environment during lifetime study

- Under reducing environment butadiene product selectivity gradually increases with time
- Regeneration mitigates butadiene yield in product slate

A Flexible process for single step conversion of ethanol to butadiene and olefins fuels precursors

Key points:

Selectivity (C mol %) **Conv (%)** Feed C₂= **C**₄⁼ **Butadiene** EtOH in 5.8 99.0 11.2 70.5 inert EtOH in 93.9 25.7 reducing 57.7 0.0 environment

Pacific Northwest

NATIONAL LABORATORY

A flexible process for production of butadiene or butene-rich olefins from Ethanol

- Single step process
- Under inert: butadiene product
- Under reducing environment: butene-rich olefins product
- Best catalyst:
 - 70% selectivity to butadiene at 99% conversion
 - 85% selectivity to olefins at 94% conversion
- Catalyst lifetime study shows reversible deactivation

Zeolite catalysis for selective ethanol conversion to C_{5+} HC_s and C_{3+} olefins

ORNL

21

Ethanol to C₃₊ olefins over 2D pillared H-zeolite

Ethanol to C₃₊ olefins over Lewis acid zeolite

Ethanol to jet: C₃₊ olefins are important intermediates

- Develop new catalyst and pathway for **one-step** ethanol to C₃-C₆ olefins production
 - Bypass ethylene step (endothermic), reduce one unit operation
 - **Reduce** ethylene and **CO₂** formation, increase carbon efficiency

Ethanol one-step to C₃₊ olefins via ethylene over H-Zeolite

- Over H-zeolite, ethylene is an important intermediate
- Paraffins and aromatics are major co-products

Ethanol one-step to C₃₊ olefins: MFI is a good candidate

MFI for ethanol to C3+ olefins

- Both H-ZSM-5 and H-SSZ-13 favor C_{3+} olefins formation
- Pore confinement effect
- Coke formation is a major challenge, especially for small-pore SSZ-13

Catalyst	Pore ring	SAR	Ethylene Con (%)	Propene Sel (%)	Butenes Sel (%)	C ₁ -C ₃ Alkanes Sel (%)
H-MOR	12	11.2	2.4	38.5	21.2	25.8
H-BEA	12	11.4	9.1	43.4	20.8	25.7
H-EU-1		10.3	30.3	32.3	22.3	26.3
H-ZSM-5	10	11.2	57.2	40.1	21.5	18.3
H-SSZ-13	8	8.4	82.9	59.5	9.8	27.9

Dai, Weili et. al Journal of catalysis. 314 (2014): 10-20.

2D Pillared-MFI: address coke formation and improve C3+ olefins selectivity

	External Surface Acid Site	Pore Mouth Acid Site	Internal Micropore Acid Site	
Conventional MFI	3.2 %	N/A	96.8 %	
Pillared MFI	32 %	5 %	63 %	

Microporous and Mesoporous Materials, 2017, 241, 43-51.

Acid site distribution impact on product distributions?

Hierarchical structure and reduced diffusion length to reduce coke formation

- Product distributions (100% ethanol conv)
 - 400 °C, WHSV = 1.6 h⁻¹, ambient pressure

Product distributions (60-62% ethylene conv)

Catalyst	ZSM-5 (70) %	PMFI (70) %
Ethylene	60	62
C ₃ -C ₄ olefins	15	32.7
Aromatics	3.7	4.8
Ethane	0.5	0.4
Propane	1.9	2.0
Butane	9.6	5.7

- Conventional ZSM-5 produces 30% more coke than PMFI
- Pillared MFI is an interesting catalyst for ethanol to C3+ olefins
- Mechanism to be studied more, especially the role of water
- Reduce ethylene and paraffins

- Develop multifunctional zeolite catalysts for cascade ethanol conversion to olefins
 - 1. Dehydrogenation: Cu, Zn, Ag
 - 2. Aldol condensation: Lewis acid sites or basic sites
 - 3. Dehydration: Brønsted acid or Lewis acid sites
 - 4. Transfer hydrogenation: Lewis acid sites
- Choice & balance of the sites are critical

EtOH – direct C₃₊ olefins over Cu-Zn/Hf-BEA (one example)

Focus: maximize C₃₊ olefins yield from ethanol

- Critical for distillate yield and minimum fuel selling price (MFSP)
- Different Lewis acid zeolites: metal centers, zeolite topology
- Different metal combinations

WHSV (h⁻¹)	Ethanol vapor pressure (kPa)	Conversion (%)	Ethylene	Butenes	C5+ Olefins	C3+ Olefins (%)	Total Olefins (%)	BD
0.32	1.6	100	34	55	3	65	99	0
0.32	8	100	30	49	8	65	95	1.0
0.32	16	100	28	45	11	67	95	2.0

Cu-Zn/Hf-BEA to achieve high C₃₊ olefins

400 °C, 1 atm, under H_2 , numbers shown for all the products are selectivity

- Complete ethanol conversion, max C₃₊ olefins of 67%, 99% total olefins
- Ethanol vapor pressure affects olefin distribution
- On Cu-Zn/Hf-BEA, need to study approach to minimize ethylene formation

Ethanol to jet fuel and co-product via C₃₊ olefins

Compared with ethanol to jet via two-step ethanol-ethylene-C₃₊ olefins:

- Significantly increase C₃₊ olefins in one step (one pass)
- Bypass the ethylene production step: first step is slightly exothermic (-0.14 MJ/Kg)
- Avoid ethylene separation step
- Opportunity to reduce Capex and Opex

High overall carbon efficiency: ~84% of theoretical yield in final fuels

Summary

- PNNL and ORNL have developed catalysts and processes for conversion of ethanol to fuels and co-products.
- A flexible catalytic process has been demonstrated for the single-step conversion of ethanol to either butadiene or n-butenes, in a cascading sequence of catalytic reactions.
- High activity and butadiene selectivity under inert atmosphere
- High activity and **butene** selectivity when under **reducing** atmosphere
- Bifunctional metal-assisted, Lewis acid-catalyzed systems present all the required active sites necessary.
 - Ag-ZrO₂/SiO₂ (PNNL)
 - Cu-Zn/Hf-BEA (ORNL)

What's next?:

- Improve C₃₊ olefin selectivity
- Enhance stability
- Evaluate with real fermentation broth
- Demonstrate conversion to distillate-range

Acknowledgements

www.cpcbiomass.org

Energy Efficiency & Renewable Energy

Bioenergy Technologies Office Nichole Fitzgerald Jeremy Leong

J. Saavedra Lopez A. Winkelman M. Flake T. Lemmon M. Swita R Rousseau S Akhade L Kovarik

J. Zhang C. Narula B. Davison S. Adhikari K. Unocic M. Cordon L. Allard Z. Wu D. Liu (UMD)

D. Ruddy

- S. Habas
- F. Baddour
- P. Ciesielski
- V. Bharadwaj