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Catalysis Challenges are Pervasive in Biomass Conversion
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Challenges due to Biomass Composition Key Catalytic Bioenergy Processes

- High oxygen content = new reactions * Lignin Deconstruction and Upgrading

*  Diverse chemical functionalities 2 competing rxns * (Catalytic Upgrading of Biological Intermediates
*  High water content - Degradation of cat. supports * Synthesis Gas Upgrading

* Impurities (S, N, alkali metals, Cl, etc.) = Poisoning * Catalytic Fast Pyrolysis

*  Multiple states and compositions (solid, liquid, or gas) * Catalytic Hydroprocessing

*  Complex, heterogeneous mixture = difficult to model * Catalytic Upgrading of Aqueous Waste Streams

Catalyst costs can represent up to 10% of the selling price of biofuel




Introducing the Chemical Catalysis for Bioenergy Consortium

is a national lab led R&D consortium dedicated to
identifying and overcoming catalysis challenges for biomass
conversion processes
* Our mission is to accelerate the development of catalysts and related
technologies for the commercialization of biomass-derived fuels and
chemicals by leveraging unique US DOE national lab capabilities
*  Our team is comprised of over 100 researchers from seven different
national labs

Advanced Synthesis and  Modeling and
Characterization

<
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Our Approach

Establish an integrated and collaborative portfolio of catalytic
technologies and enabling capabilities

Foundational Science Applied Engineering
Advanced Catalyst Cost Estimation
Synthesis and — —
Characterization

Performance
Evaluation

Bench-scale .

reactions _Q_;,_

m 4 Catalyst Scaling and
Product analysis . .
——— Pilot-Scale Testing
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Syngas Upgrading: Market, Opportunity, and Challenge

Market Opportunity:

Technology Opportunity:

Increasing Demand for Premium Gasoline Production of High-Octane Synthetic

20%
.~ X

23 15% | @i X

v o e «

T 2 X

52 10% 4 N4

(1+] 1

s2 T 0

EE :

e 8 5%

% [ < historical

- 9\3 [ Source: EIA, OPIS Xprojected
0% : , . .

2005 2010 2015 2020 2025 2030

Reactivate and reincorporate light alkane
products (isobutane) into the chain growth
mechanism, thereby maximizing Ci, yield
- Metal-modified HBEA
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Alkylate from Biomass-Derived
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Syngas Upgrading: Catalyst Advancements

Active Site Reaction Mechanism Performance Evaluation
Identified Cu(l) as the active Calculated energetics for Demonstrated C,
site for i-C, dehydrogenation 2-step mechanism over reincorporation

using in-operando X-ray [ DME + Hp | —
Absorption Spectroscopy [ Ca alkane |—
1.0 — =
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C. Farberow, et al., ACS Catalysis 7 (2017) 3662 Reaction coordinate 40 41 42 43 \n/ 45

Outcomes:

e Reduced modeled fuel production cost by >51/gal since 2015
* |dentified promising bimetallic formulations for improved performance
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25

Billion gallons

Market Opportunity:

Advanced Biofuel Market Size:

S7B - S15B per year

Catalytic Fast Pyrolysis: Market, Opportunity, and Challenge

Technology Opportunity:

Renewable Fuel Standard Mandates for Woody Biomass Conversion to Gasoline
Advanced Biofuels

and Diesel Blendstocks through
Catalytic Fast Pyrolysis
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. J =
ZeO“te Catalysts A. Dutta, et al., Top. Catal. 59 (2016) 2
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Catalytic Fast Pyrolysis: Catalyst Advancements

Surface Chemistry
Determined role of acidic and

Identified deactivation

metallic sites for CFP using mechanism using in-situ

advanced characterization

Pt/TiO,

238 236 234 232 230 228

it BE (eV)

980 cd

o

P

Mo,C
M. Griffin, et al., ACS Catalysis 6 (2016) 2715

TEM

Raman
Spectroscopy

Intensity (a.u.)

spectroscopy

—— Fresh Mo,C
—— Post-Reaction Mo,C

D-Band

200

T T T
600 1000 1400 1800

Raman Shift (cm™)

MS Intensity (a.u.)

MS Intensity (a.u.)

— CO
H,0
H,

Post-Rxn

J. Schaidle, et al., ACS Catalysis 6 (2016) 1181 100 W s

Outcomes:
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Deactivation Mechanism Performance Evaluation

Demonstrated improved
oil yields for CFP and
catalyst regenerability
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Reduced modeled fuel production cost by $0.85/gal since 2016
Enhanced deoxygenation by tuning metal-acid bifunctionality
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Catalytic Upgrading of Biochemical Intermediates:

Market, Opportunity, and Challenge

Market Opportunity: Technology Opportunity:
Biomass-Derived Oxygenates as Platform Hybrid Biological-Catalytic Route for
Chemicals Production of 1,4-Butanediol through
o Succinic Acid
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M. Biddy, et al., NREL Technical Report, 2016. Process operates under corrosive
conditions:

Enhance catalyst selectivity to 1,4-BDO and ~ ° 170-190°C

stability under acidic aqueous conditions * 100-120 bar H,
- Bimetallic formulations * 5wt% succinic acid in water
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Catalytic Upgrading of Biochemical Intermediates:
Catalyst Advancements

Composition and Morphology  Catalyst Stability Performance Evaluation
Validated co-location of Ru Computationally Converted corn stover-
and Sn using high-resolution determined bimetallic derived succinic acid to
scanning transmission catalyst stability 1,4-BDO in a flow system
electron microscopy 100
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Outcomes:

* Identified a Ru-Sn bimetallic catalyst that achieved 71% vyield to 1,4-BDO
* Developed computational models to predict stability of bimetallic catalysts
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Catalyst Cost Model Development

ChemcCatBio is releasing a free-of-charge catalyst cost estimation tool
The CCM tool enables: Bulk Mo2C/Si02 Materials Cost \

 Meaningful cost comparison for pre- | = Tpggteae R oo ooooooooo oo
commercial catalysts at bulk scale

* |dentification of major cost drivers to
guide further research

» Sensitivity/risk analysis to aid
commercialization of new catalysts and
processes

* An assessment of the value proposition of ~

Change in catalyst cost ($/Ib), above or below base case ($41.71/1b)

e , S
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Due for release in 2018 as a downloadable spreadsheet and companion web app
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Catalyst Cost Model Development: Approach

Raw materials from grams to tons From Laboratory Steps to Unit Ops

DOCOC Dissolution Impregnation Drying Heat treatment Pre-treatment

A :
Ni(acac),+ 0.5 TOP W Satelalels _> Ni Nanocatalyst H 20-100°C U 20-100°C Q 20-200°C Q 200-700“c@ zoo-aoo°cg

Ni nanoparticles

—

Pyrolysis Of
Catalyst Material Function density [y & amount unit I
precursor stasezzn [ Mk Hysrogen
IW-Ni,P/SiO; water solvent 1 35 mL oy
ammonium phosphate dibasic P-source 0.89 g o = T
Conc. Nitric Acid additive 1.51 1 mL HOO §TG-1 . . "
Ni{NO3); - 6 H,0 metal source 29079 19 g ] 7=
Sipernat-22 support 9.50 g
Final Catalyst 10.00 g H0O 5762 I 290 [
BN | 1 e ;
i Quantity Priced$/Lba _ . -~ - = X
Materials Pricel Source
(Lb) material) 43) e,
water 135830 0.005 677 IHSEPEP s ' o R
ammonium phosphate dibasic 3454 0.462 1597 IHSEPEP = F
Conc. Nitric Acid 5860 0.089 522 IHSEPEP
Ni(NOs)z - 6 H,0 7606 1.984 15089 Alfa
Sipernat-22 36868 0.874 32227 IHSECEH
Up-to-date material pricing and

industry standard scaling
relationships Parameterized scale-up templates

. 4 . 4

Rapid and accurate early-stage catalyst cost estimation
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Catalyst Cost Model Development: Value Proposition
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* Analysis with the CCM tool enables an early assessment of the
value proposition of a catalyst

e (Catalyst performance metrics (e.g., lifetime, yields, regenerability)
can be normalized by cost

* Expands early-stage catalyst design criteria to include production
cost
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Announcements and Engagement Opportunities

 Awarded $4.3M in Directed Funding Assistance in September
for industry to leverage ChemCatBio capabilities to overcome
technical challenges in catalyst development and evaluation

— 9 projects selected with 8 different industry partners

— Gevo, Visolis, Vertimass, Lanzatech, ALD Nanosolutions, Johnson
Matthey, Opus-12, and Sironix Renewables

* Seeking members for our Industry Advisory Board

— Role: Guide the consortium toward industry-relevant R&D,
provide a business perspective, and identify knowledge gaps

— If interested, please contact us at Contact@ChemCatBio.org

* QOrganizing a ChemCatBio Symposium at the 255t ACS National
Meeting in New Orleans on March 20t and 215t ACS

— Abstracts due Friday October 20t R chemistry forLife
— Hosted in the Division of Catalysis Science and Technology (CATL)
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