

The Chemical Catalysis for Bioenergy Consortium:

Enabling Production of Biofuels and Bioproducts through Catalysis **Josh Schaidle** October 17th, 2017

Catalysis Challenges are Pervasive in Biomass Conversion

Challenges due to Biomass Composition

- High oxygen content \rightarrow new reactions
- Diverse chemical functionalities \rightarrow competing rxns ۰
- High water content \rightarrow Degradation of cat. supports
- Impurities (S, N, alkali metals, Cl, etc.) \rightarrow Poisoning ۰
- Multiple states and compositions (solid, liquid, or gas) ۰
- Complex, heterogeneous mixture \rightarrow difficult to model

Key Catalytic Bioenergy Processes

- Lignin Deconstruction and Upgrading •
- Catalytic Upgrading of Biological Intermediates •
- Synthesis Gas Upgrading •
- **Catalytic Fast Pyrolysis** •
- Catalytic Hydroprocessing •
- Catalytic Upgrading of Aqueous Waste Streams •

Catalyst costs can represent up to 10% of the selling price of biofuel

Introducing the Chemical Catalysis for Bioenergy Consortium

ChemCatBio is a national lab led R&D consortium dedicated to identifying and overcoming catalysis challenges for biomass conversion processes

- Our mission is to accelerate the development of catalysts and related technologies for the commercialization of biomass-derived fuels and chemicals by leveraging unique US DOE national lab capabilities
- Our team is comprised of over 100 researchers from seven different national labs

Advanced Synthesis and Characterization

Modeling and Interactive Tools

Multi-Scale Evaluation

Energy Materials Network U.S. Department of Energy

Our Approach

Establish an integrated and collaborative portfolio of catalytic technologies and enabling capabilities

Foundational Science

Applied Engineering

Syngas Upgrading: Market, Opportunity, and Challenge

products (isobutane) into the chain growth mechanism, thereby maximizing C₅₊ yield \rightarrow Metal-modified HBEA

ABLC Next 2017

10.0%

0.0%

Syngas Upgrading: Catalyst Advancements

Outcomes:

- Reduced modeled fuel production cost by >\$1/gal since 2015 ۲
- Identified promising bimetallic formulations for improved performance •

ABLC Next 2017

Catalytic Fast Pyrolysis: Market, Opportunity, and Challenge

Catalysis Challenge:

Improve carbon yields and extend catalyst lifetime

 \rightarrow Leverage a fixed-bed system with co-fed H₂ operating at near atmospheric pressure over non-zeolite catalysts

Energy Materials Network

Catalytic Fast Pyrolysis: Catalyst Advancements

Outcomes:

- Reduced modeled fuel production cost by \$0.85/gal since 2016
- Enhanced deoxygenation by tuning metal-acid bifunctionality

ABLC Next 2017

Energy Materials Network

Catalytic Upgrading of Biochemical Intermediates: Market, Opportunity, and Challenge

Market Opportunity:

Biomass-Derived Oxygenates as Platform Chemicals

M. Biddy, et al., NREL Technical Report, 2016.

Catalysis Challenge:

Enhance catalyst selectivity to 1,4-BDO and stability under acidic aqueous conditions

 \rightarrow Bimetallic formulations

Technology Opportunity:

Hybrid Biological-Catalytic Route for Production of 1,4-Butanediol through Succinic Acid

D. Vardon, et al., ACS Catalysis 7 (2017) 6207

Process operates under corrosive conditions:

- 170-190°C
- 100-120 bar H₂
- 5wt% succinic acid in water

Energy Materials Network U.S. Department of Energy

Catalytic Upgrading of Biochemical Intermediates: Catalyst Advancements

Top view

Composition and Morphology Validated co-location of Ru and Sn using high-resolution scanning transmission electron microscopy

Catalyst Stability

Computationally determined bimetallic catalyst stability

Performance Evaluation

Converted corn stoverderived succinic acid to 1,4-BDO in a flow system

Outcomes:

- Identified a Ru-Sn bimetallic catalyst that achieved 71% yield to 1,4-BDO
- Developed computational models to predict stability of bimetallic catalysts

Catalyst Cost Model Development

ChemCatBio is releasing a free-of-charge catalyst cost estimation tool

The CCM tool enables:

- Meaningful cost comparison for precommercial catalysts at bulk scale
- Identification of major cost drivers to guide further research
- Sensitivity/risk analysis to aid commercialization of new catalysts and processes
- An assessment of the value proposition of advanced catalysts early in development

ChemC

Chemical Catalysis for Bioenergy

Number of processing steps (5:10:15)

Ni(acac)2 cost (5:9.58:15 \$/lb

Recycling/waste value, % of purchase cost (75:0:-100)

Due for release in 2018 as a downloadable spreadsheet and companion web app

ABLC Next 2017

Energy Materials Network U.S. Department of Energy

Catalyst Cost Model Development: Approach

Raw materials from grams to tons **Ni(acac)**₂ + 0.5 **TOP** Ni Nanocatalyst Ni nanoparticles MW of amount unit Catalyst Material Function density nrecursor IW-Ni₂P/SiO₂ water solvent 35 mL ammonium phosphate dibasic P-source 0.89 g Conc. Nitric Acid additive 1.51 1 mL Ni(NO₃)₂ - 6 H₂O metal source 290.79 1.96 g Sipernat-22 support 9.50 g **Final Catalyst** 10.00 g Quantity Price (\$/Lb Materials Price (\$) Source (Lb) material) 135830 water 0.005 677 IHS PEP ammonium phosphate dibasic 3454 0.462 1597 IHS PEP Conc. Nitric Acid 5860 0.089 522 IHS PEP 7606 Ni(NO₃)₂ - 6 H₂O 1.984 15089 Alfa 36868 Sipernat-22 0.874 32227 IHS CEH

Up-to-date material pricing and industry standard scaling relationships

From Laboratory Steps to Unit Ops

Parameterized scale-up templates

U.S. Department of Energy

Energy Materials Network

Rapid and accurate early-stage catalyst cost estimation

Catalyst Cost Model Development: Value Proposition

- Analysis with the CCM tool enables an early assessment of the value proposition of a catalyst
- Catalyst performance metrics (e.g., lifetime, yields, regenerability) can be normalized by cost
- Expands early-stage catalyst design criteria to include production cost

Announcements and Engagement Opportunities

- Awarded \$4.3M in Directed Funding Assistance in September for industry to leverage ChemCatBio capabilities to overcome technical challenges in catalyst development and evaluation
 - 9 projects selected with 8 different industry partners
 - Gevo, Visolis, Vertimass, Lanzatech, ALD Nanosolutions, Johnson Matthey, Opus-12, and Sironix Renewables
- Seeking members for our Industry Advisory Board
 - Role: Guide the consortium toward industry-relevant R&D, provide a business perspective, and identify knowledge gaps
 - If interested, please contact us at Contact@ChemCatBio.org
- Organizing a ChemCatBio Symposium at the 255th ACS National Meeting in New Orleans on March 20th and 21st
 - Abstracts due Friday October 20th
 - Hosted in the Division of Catalysis Science and Technology (CATL)

ABLC Next 2017

Acknowledgements

For more information, please visit our website at ChemCatBio.org or email us directly at Contact@ChemCatBio.org

ChemCatBio Team

ENERGY Bioenergy Technologies Office

Energy Materials Network U.S. Department of Energy

The Chemical Catalysis for Bioenergy Consortium:

Enabling Production of Biofuels and Bioproducts through Catalysis **Josh Schaidle** October 17th, 2017