
Michael Griffin, Brennan Pecha, 
Bruce Adkins
January 13, 2021

Advancing Catalytic Fast Pyrolysis 
through Integrated Experimentation 

and Multi-Scale Computational 
Modeling



Bioenergy Technologies Office  |

Catalytic Fast Pyrolysis (CFP) Overview 

2

Ruddy, D. et al. Green Chem., 2014, 16, 454
Langholtz, M. H., et al. 2016 Billion Ton Report, US DOE, ORNL-TM2016-160

CFP is an adaptable pathway for the conversion of woody biomass and 
waste carbon sources into fuel blendstocks and chemical co-products
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Approach to Catalytic Fast Pyrolysis
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Fluidized Bed Zeolite CFP
Pilot and demonstration scale data 

demonstrate the technical 
feasibility of the approach

Challenge: Rapid coking lowers 
yields, necessitates frequent 

regeneration, and drives up fuel 
costs

Fixed Bed Hydrodeoxygenation
Fundamental research highlights 

opportunities for enhanced 
performance

Gap: Lack of realistic reaction 
testing data increases risk and 

uncertainty
Technical approaches include different 

catalysts and reactor configurations

In-Situ
CFP

Ex-Situ
CFP
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Integrated Reaction Testing With Biomass
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Catalyst
0.5-2.0 wt% Pt/TiO2

on Technical Supports

Pyrolysis Temperature: 500 °C WHSV: 1.4 g biomass/gcat*h
Upgrading Temperature: 435-450 °C Biomass:Catalyst Ratio: 3-13.2 
Catalyst Mass: 100 g Hydrogen Concentration: 83%

Conditions

Idaho National Lab

> 10 L of CFP-oil produced over 100+ reaction cycles
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Reaction Testing Highlights Improved Performance 
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V. Paasikallio, et al. Energy Technol 5, 2017, 94 
V. Paasikallio, et al. Green Chem 16, 2014, 3549

Pt/TiO2 exhibited
improved carbon yields at similar 

oxygen content compared to ZSM-5

Griffin, M. et al., Energy Environ Sci, 2018, 2904
K. Iisa, et al. Energy Fuels 30, 2016, 2144

K. Iisa, et al. Top Catal 59, 2016, 94

Pt/TiO2 exhibited 
stable performance over 100+
reaction/regeneration cycles
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Stable Single Stage Hydrotreating
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NiMo Sulfide, LHSV: 0.2-0.3, 13 MPa

The Pt/TiO2 CFP-oil was hydrotreated 
using a single stage system for 80+ 
hours without fouling or plugging

Carbon 
yield %

H/C
mol/mol

O
wt.% dry

Density
g ml-1

89 1.71 0.19 0.851

Griffin, M. et al., Energy Environ. Sci., 2018, 11, 2904

Fractionation indicates high 
selectivity to the distillate range

45 wt% in 
gasoline range 

39 wt% in 
diesel range

Fuel testing reveals need for 
continued R&D

Measured Target

Gasoline AKI 65 85

Diesel DCN 24 40

CFP provide opportunity to improve fuel quality 
by controlling hydrogenation and promoting 

ring opening reactions
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Technoeconomic and Lifecycle Analysis
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Conceptual process models indicate a minimum fuel selling price of $3.80, with an 
opportunity for further reduction through refinery integration and the generation 

of chemical co-products

Fluidized Bed 
Zeolite Catalyst

Fixed Bed Pt/TiO2
Catalyst

Chemical 
Co-Products

Refinery 
Integration

Reference: https://www.nrel.gov/docs/fy20osti/76269.pdf; SOT: State of Technology; MFSP: Minimum Fuel Selling Price

CO2

> 50%
Considerable reduction in 

carbon intensity

Overall Process
Carbon Yield:

36% for Pt/TiO2
≤ 22% for ZSM-5

https://www.nrel.gov/docs/fy20osti/76269.pdf
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Summary and Research Needs
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High Yields

Improved Economics

Low Emissions

Process Stability

Scalability

Integrated reaction testing confirmed potential for improved performance from 
fixed bed hydrodeoxygenation and motivates investigation of process scale up

Leverage partnerships to perform particle and reactor scale  
computational modeling to directly address open questions 

about reaction kinetics and process scale-up   



Teasing out fundamental 
information from bench top packed 

bed reactor experiments with 
multiscale modeling
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Introduction
• Promising bioenergy technologies often 

fail at scale-up

• Modeling can guide engineers moving 
from bench to pilot

• Simultaneous transport 
phenomena at multiple scales

• Multiscale frameworks enable the use 
of DOE’s high-performance computing 
(HPC) capacity

• In this work, we apply multi-scale 
modeling to catalytic fast pyrolysis 
vapor phase upgrading over platinum 
on titania
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Multiscale phenomena in catalysis

Ciesielski, Pecha, Bharadwaj, et al., Advancing catalytic fast pyrolysis through 
integrated multiscale modeling and experimentation: Challenges, progress, and 
perspectives. Wiley Interdisciplinary Reviews: Energy and Environment 2018, 7, 297.
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Multiscale phenomena in catalysis

Ciesielski, Pecha, Bharadwaj, et al., Advancing catalytic fast pyrolysis through 
integrated multiscale modeling and experimentation: Challenges, progress, and 
perspectives. Wiley Interdisciplinary Reviews: Energy and Environment 2018, 7, 297.
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Multiscale phenomena in catalysis

Ciesielski, Pecha, Bharadwaj, et al., Advancing catalytic fast pyrolysis through 
integrated multiscale modeling and experimentation: Challenges, progress, and 
perspectives. Wiley Interdisciplinary Reviews: Energy and Environment 2018, 7, 297.
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Multiscale phenomena in catalysis

Ciesielski, Pecha, Bharadwaj, et al., Advancing catalytic fast pyrolysis through 
integrated multiscale modeling and experimentation: Challenges, progress, and 
perspectives. Wiley Interdisciplinary Reviews: Energy and Environment 2018, 7, 297.
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Multiscale phenomena in catalysis

Ciesielski, Pecha, Bharadwaj, et al., Advancing catalytic fast pyrolysis through 
integrated multiscale modeling and experimentation: Challenges, progress, and 
perspectives. Wiley Interdisciplinary Reviews: Energy and Environment 2018, 7, 297.
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Observed reaction rate: Physics at all scales

Intra-particle 
diffusion

Extra-particle 
diffusion and 
convection

Observed 
reaction rate

Intrinsic reaction 
kinetics
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Bench scale ex-situ catalytic fast pyrolysis system utilized 
in this work with a packed bed (fixed bed) of catalyst

Experimental setup for CFP

17
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Problem description

18

Pecha, Iisa, Griffin, Mukarakate, French, Adkins, Bharadwaj, Crowley, Foust, 
Schaidle, and Ciesielski. “Ex situ upgrading of pyrolysis vapors over PtTiO 2: 
extraction of apparent kinetics via hierarchical transport modeling.” Reaction 
Chemistry and Engineering, 2020

Relevance:
• Coke profiles predicted by the 

simulation enable detailed simulation 
of regeneration cycles.

• Transport-independent kinetic 
parameters enable computational 
scaling studies and in-silico reactor 
optimization.

Packed bed vapor phase 
upgrading reactor
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Yields can be broken down into lumps

19
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Deactivation and multiple active sites

20

h

On-stream MS shows rapid 
deactivation

Lumped reaction scheme 
describes organic fraction of 
pyrolysis vapors over PtTiO2

How do changes to catalyst 
properties and operating 

conditions impact process 
performance metrics (yield, 

composition, catalyst lifetime)?
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Modeling approach: Extending the Thiele 
effectiveness factor

Problem: Accurately model multi-step 
reactions requires heavy computational 
resources, not suitable for iterative 
parameter extraction
Hypothesis: An analytical solution to 
diffusion-reaction-deactivation is 
mathematically feasible and will 
accurately represent multi-step 
reactions
Solution: Extend the effectiveness 
factor

State of the art for accounting for 
diffusion limitations in porous catalysts: 
Thiele (1930s) + Aris (1970s)

No coupling of intraparticle sequential 
reactions
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Extending the Thiele effectiveness factor: 
A bridge between scales

Lattanzi A, Pecha MB, Bharadwaj VS, Ciesielski PN, “Beyond the effectiveness factor: multi-step reactions with
intraparticle diffusion limitations,” Chemical Engineering Journal (2020) 380, 15, 122507.
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Extending the Thiele effectiveness factor: 
A bridge between scales

Lattanzi A, Pecha MB, Bharadwaj VS, Ciesielski PN, “Beyond the effectiveness factor: multi-step reactions with
intraparticle diffusion limitations,” Chemical Engineering Journal (2020) 380, 15, 122507.
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Apply multistep effectiveness vector to PBR

Packed bed transport equations
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MEV formulation
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Catalyst characterization

25

(a) Light microscopy of catalyst particles
showing the spherical bulk geometry with narrow
size distribution. (b) Scanning electron
microscopy (SEM) of the particle surface reveals
a porous support structure formed by the
agglomeration of TiO2 nanoparticles. (c)
Transmission electron microscopy shows the
presence of ~5 nm Pt particles visualized as
dark spots on the surface of the larger TiO2
support structure.

(a, b) Slices through the tomographic volume 
are shown at two different magnifications. Pt 
particles are clearly identified by their higher 
electron density (indicated by red arrows in 
panel b). (c, d) 3D visualizations of the 
reconstructed volume are shown at two 
different magnifications. 

TEM Tomography of the TiO2 
catalyst particle mesostructure

Multiscale imaging of the Pt/TiO2 
catalyst particles
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Apparent rate constants fit to real data
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RATE CONSTANT FITTED VALUE
k1 [s-1] 76

k1g [s-1] 50.5
k1w [s-1] 39

k2 [s-1] 5.4
k2g [s-1] 0.7

k2w [s-1] 7.9E-10
k3 [s-1] 7E-14
k4 [s-1] 3.7E-4

ΘS1 1.2E-3
ΘS2 15.2

Best-fit lumped rate constants fit 
for base case

Initial guess for 10 apparent rate parameters
+ experimental data

Simplex parameter optimizer + PBR model
New 

parameters 
from optimizer

Multiscale packed bed model

Objective function 
(yield vs time)
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Results: Model validation

27
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Results: Predictions and extrapolations

28
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• New multiscale simulation framework was capable of 
capturing

• multiple cascading reactions 
• multiple operating conditions 
• catalyst loadings
• active site deactivation 

• Fast, accurate, can be used to mine old *good* data
• Future work will extend the model to other catalyst 

shapes, other technologies
• In the next slides, you will see how results from this work 

were used to design a catalytic regeneration system at a 
much larger scale with a different set of modeling tools.

Conclusions

29



Packed Bed Reactor Scale-up
Using

High Fidelity Reactor Models
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Upgrading

Biomass Feed, g/hr 150

Inlet Pressure, kPa 110

Inlet Temperature, °C 410

H2 Flowrate, SLPM 13.5

N2 Flowrate, SLPM 2.4

WHSV, hr-1 1.5

Duration, B/C (hr) 12 (8)

Oxidative Regeneration

Inlet Temperature, °C 410

Outlet Temperature, °C 450

N2 Flowrate, SLPM 15.6

Air Flowrate, SLPM 0.42

Duration, hr 8

0.5 mm Pt/TiO2 Spheres

Lab Scale Packed Bed Reactor (PBR) and Catalyst
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• TCPDU-PBR
• 6 kg cat
• 9 kg/hr biomass
• WHSV 1.5 hr-1

• Constraints
• PBR ∆P 20 kPa or less
• No wall heat removal 

(mimic industrial scale)
• Gas temperature ≈ 400°C 

to minimize cycle time and 
ensure quick light-off 

• B/C = 12 corresponds to 
25 wt% coke (g C / g fresh)

Scaling Up the PBR

32
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• Split the 6 kg bed between 3 existing reactors, 2 kg each

• Per-bed scale-up = 20 X

• N2 flow limit = 1200 SLPM, 400 kg per bed

• Each reactor has 3 heating rods which can be converted 
to cooling tubes

• Air flow limit = 1800 SLPM, 200 per tube

Scaling Up the PBR (2)

33
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Model Details 

34

TCPDU                   
18M Pellets

Image made using COMSOL Multiphysics® software and provided courtesy of COMSOL.26

N2 Flow, 
SLPM 

(410⁰C) 

Cooling Air Flow, SLPM (30⁰C) 

600 300 No Flow 

400 Case 1 Case 2 Case 3 
300 Case 4 Case 5 Case 6 
200 Case 7 Case 8 Case 9 

 

ncell = 152k   npellet/cell = 120

ncell = 434k   npellet/cell = 42

2FBR
900k Pellets  
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Thermal Parameters

∆H, J/mol 3.94x105

Thermal conductivity, 
W/(m.K) ks,eff

Wall heat transfer, 
W/(m2.K) hw

Bulk heat capacity,
J/(kg.K) 680

2FBR Data Used in Model Development

Catalyst / Bed
Parameters

Af, m3/(mol.s) 25

Ea, J/mol 5x104

ABD, kg/m3 900

ρskel, kg/m3 3,900

ρpe, kg/m3 1,900

Pellet porosity 0.592

Bed voidage 0.437

Total voidage 0.770

BET, m2/g 54

Pore diam, nm 27

CO2 in effluent gas

Outlet temperature

Coke profile 
predicted by 

kinetics model
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Biggest Unknown: Heat Transfer Parameters
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TCPDU Model Predictions
Temperature, °C               ∇T, °C/cm                       dT/dt, °C/s 

400 SLPM N2
No Cooling Air

200 SLPM N2
600 SLPM 

Cooling Air

Ai
r F

lo
w

 D
ire

ct
io

n

Rapid 
Cooldown

Sharp 
Gradients

t = 3 hrs
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TCPDU Model Predictions (2)

38

200 SLPM N2, 600 SLPM Cooling Air

Intrapellet
Gradients

Reduced 
Order 
Model

B.D. Adkins et.al, Predicting thermal excursions during in-situ oxidative regeneration of packed bed catalytic 
fast pyrolysis catalyst, submitted to Reaction Chemistry and Engineering
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1. Risk of catalyst damage and/or accelerated 
irreversible deactivation from thermal excursion is high in 
proposed TCPDU design
 Pressure drop associated with small catalyst particle size 

(0.5 mm) constrains bed depth and process gas flow rate, 
both of which constrain heat removal

2. Potential design improvements
 Construct reduced order models and throughly map 

catalyst / bed design space
 Evaluate moving bed alternatives to packed bed. Not fluid 

bed: more like Continuous Catalytic Reformers (CCRs)

3. Although small by industry standards, a scale-up factor of 
20 can be substantial, as demonstrated here

Conclusions

39
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1. Firm up conclusions from regen model by addressing 
key unknowns
 Thermal conductivity of catalyst pellets
 Experimental measurements
 High resolution mesoscale modelling of heat 

transfer
 Coke distribution
 Bed dissection
 Carbon distribution in pellet interiors

2. Expand model to include stacked beds with multiple 
catalysts

Improvements in Reactor-Scale Models

40
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Stacked Bed Model

Bed-Specific Parameters

Mass of catalyst

ABD

Skeletal density

Particle size

Particle shape

Pore volume

Surface area

Pore diameter

Porosity

Void fraction

Thermal conductivity

Heat capacity

Wall heat transfer coeff.

Reaction rate constants

Reaction enthalpy

…

hwall, W/(m2.K)

T, °C

Twall, °C

T, °C
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Stacked Bed Model

Benzene                      Cyclohexane               Ethylene                       Butane

Mass 
Fractions

← log(Af,1)

log(Af,2) →
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Thank you. Let’s Discuss.
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