Linking Catalyst and Process Development with Techno-Economic Analysis in the Conversion of Biomass to High-Octane Gasoline

Daniel Ruddy
March 7, 2018
Coupling Traditional Catalyst Development with TEA

Synthesis & Characterization

Hydrotalcites

Cu/BEA

Theory

Product analysis

Bench-scale reactions

Technoeconomic Analysis (TEA)

Catalyst Testing

Catalyst Scaling & Pilot-Scale Testing

Techno-economic Analysis (TEA)
Biomass Grand Challenge: Complex Functionality

Biomass - $\text{CH}_{1.4}\text{O}_{0.6}$

- Cellulose
- Hemicellulose
- Lignin

Thermochemical Pathways

Pyrolysis
Gasification

Intermediates
- high yield
- balanced stability and reactivity

Fuels - $\text{C}_n\text{H}_{2n+2}$

- Gasoline
- Diesel
- Jet Fuel

ChemCatBio
Traditional syngas to hydrocarbon fuels have known drawbacks:
- Fischer Tropsch (FT): Costly catalytic upgrading to produce quality fuels
- Methanol-to-Gasoline (MTG): Capital intensive, high aromatics content
- Mobil Olefins-to-Gasoline-and-Distillate (MOGD): Capital intensive, high number of process steps

Net cost of production from biomass (2014 $)
- FT = $3.82/gal (GGE)
- MOGD = $4.80/gal (GGE)

Advanced catalysts and processes are required to produce cost-competitive biomass-derived fuels

A market-responsive biorefinery concept around methanol

- Conversion of \(C_1 \) intermediates (methanol/DME)
- Non-FT, non-MTG/MOGD route
- Three common fuels from this process
- Balance production of each to meet market needs
Overview: DME-to-hydrocarbons process

Key points on the technology

-DME and/or methanol can be synthesized selectively from a number of sources
-Total product is a \textit{paraffin/olefin mixture} with many \(\text{C}_4-\text{C}_8 \) isomers
 -Oxygen-free product (except methanol)
 -Not MTG: Only observed aromatic is hexamethylbenzene (b.p. 265 °C)
-High-octane product is attractive as renewable \textit{refinery alkylate blendstock}
-\(\text{C}_4-\text{C}_8 \) olefins are \textit{distillate fuel precursors}
Comparing MTG and HOG Pathways

<table>
<thead>
<tr>
<th>Methanol to Gasoline (MTG) Pathway</th>
<th>High-Octane Gasoline (HOG) Pathway</th>
<th>Advantages of HOG Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Branched HC product, minimal aromatics</td>
</tr>
<tr>
<td>ZSM-5 zeolite catalyst</td>
<td>Beta-zeolite catalyst</td>
<td>Lower severity conditions, lower coking rate</td>
</tr>
<tr>
<td>650 – 950 °F</td>
<td>350 – 450 °F</td>
<td>High octane synthetic alkylate</td>
</tr>
<tr>
<td>315 psia</td>
<td>130 psia</td>
<td>Higher yield (18%)</td>
</tr>
<tr>
<td>RON: 92</td>
<td>RON: 95+</td>
<td></td>
</tr>
<tr>
<td>MON: 83</td>
<td>MON: 90+</td>
<td></td>
</tr>
<tr>
<td>55 gal/ton</td>
<td>65 gal/ton</td>
<td></td>
</tr>
</tbody>
</table>
Process Design for Biomass to High-Octane Gasoline

Feedstock

- Woody Biomass

Leveraging gasification & syngas cleanup

1. Feed Handling & Preparation
2. Gasification (Indirect Circulating Dual Fluidized Beds)
3. Gas Cleanup (Tar Reforming, Syngas Scrubbing, Compression)

Heat Integration & Power Generation

Leveraging commercially available technologies

1. Methanol Synthesis (Acid Gas Removal, PSA, Methanol Synthesis)
2. Methanol Recovery (Syngas/Methanol Separation, Degassing)
3. Methanol Intermediate

Methanol

- Methanol Recovery
- Methanol to Dimethyl Ether (DME)

Advanced fuel synthesis technology

- HOG Product
- Product Recovery
- DME to High-Octane Gasoline
- DME + C4 Recycle

Long-term targets: 65 gal/dry-ton biomass; $3.41/gal

Near-term values with HBEA catalyst: 40 gal/dry-ton biomass; $5.20/gal
Using the TEA model to aid catalyst development

- Sensitivity analysis highlights the importance of developing an inexpensive catalyst with a long lifetime that demonstrates high selectivity to C_{5+} products to increase product yield
- Selectivity to C_{5+} products is more important than conversion

HOG Yield
(70:65:60 Gal/ton)

HOG Catalyst Cost
(50:100:200%)

HOG Synthesis Catalyst Lifetime
(5:2:1 year)

Single-Pass DME Conversion
(40:40:25%)
What limits the performance by HBEA?

Hydrogen Deficiency

\[\text{CH}_3\text{OCH}_3 \rightarrow 2 \text{ “CH}_2” + \text{H}_2\text{O} \]

Need an additional 2H per alkane produced

Yield Loss

\[33 \text{CH}_3\text{OCH}_3 \rightarrow 6 \text{C}_7\text{H}_{16} + 33 \text{H}_2\text{O} + 2 \text{C}_6(\text{CH}_3)_6 \]

Leads to formation of heavy unsaturated hydrocarbons

Catalyst Improvements Needed

1. Shift away from aromatic cycle and toward olefin cycle
2. \(\text{H}_2 \) can be activated and participate in the reaction
 - reduce aromatic formation, maintain \(\text{C}_{5+} \) selectivity
3. Light alkane products can be reactivated and re-enter the catalytic cycle
 - recycle (to extinction) to maximize \(\text{C}_{5+} \) yield
Cu/BEA for improved DME homologation performance

2-3X increase in HC production rate AND extended lifetime

- Decrease in aromatic (HMB) selectivity for Cu/BEA + H₂
- Products from olefin cycle are favored using Cu/BEA + H₂
- Cu/BEA catalyst achieves the first 2 goals

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Aromatic cycle</th>
<th>Olefin cycle</th>
<th>%C as HMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBEA</td>
<td>23%</td>
<td>77%</td>
<td>13%</td>
</tr>
<tr>
<td>HBEA + H₂</td>
<td>21%</td>
<td>79%</td>
<td>7%</td>
</tr>
<tr>
<td>Cu/BEA + H₂</td>
<td>8%</td>
<td>92%</td>
<td>4%</td>
</tr>
</tbody>
</table>

What is the role of Cu?

Cu speciation explored using XAS (Argonne National Lab)

- Observe contributions from *metallic* and *ionic* Cu

Multi-functional catalysis:

(1) metallic Cu activates H₂, performs ethylene/propylene hydrogenation (increases P:O ratio)

(2) cationic Cu facilitates H-transfer (dehydrogenation)

-Observed extensive *D- incorporation* with D₂

- H₂ *production* from C₄H₁₀ over Cu/BEA

TEA Motivation to Recycle C_4 Product

C_4 product recycle is a critical component in the TEA to achieve high yield and lower cost of production.

Yield and Cost Impact with C_4 Recycle
Why is C_4 dehydrogenation difficult?

Step-wise chain-growth mechanism for DME-to-Hydrocarbons

- Alkanes are considered terminal products – no re-incorporation over HBEA
- Dehydrogenation of isobutane offers a simple system to probe the ability of a catalyst to reincorporate C_4 alkanes

Approach: Combined computational and experimental studies over Cu/BEA

Catalyst Materials and Characterization

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Pre-treatment</th>
<th>Site (characterization)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuO/SiO₂</td>
<td>1% O₂, 500 °C</td>
<td>CuO particles (XRD)</td>
</tr>
<tr>
<td>Cu/SiO₂</td>
<td>1% O₂, 500 °C; 2% H₂, 300 °C</td>
<td>Cu(0) particles (XRD)</td>
</tr>
<tr>
<td>H-BEA</td>
<td>1% O₂, 500 °C</td>
<td>Brønsted acid (NH₃ TPD, pyridine-DRIFTS)</td>
</tr>
<tr>
<td>ox-IE-Cu/BEA</td>
<td>1% O₂, 500 °C</td>
<td>Ionic Cu(II)-zeolite (XAS)</td>
</tr>
<tr>
<td>red-IE-Cu/BEA</td>
<td>1% O₂, 500 °C; 2% H₂, 300 °C</td>
<td>Ionic Cu(I)-zeolite (XAS)</td>
</tr>
</tbody>
</table>

- **Synthesized catalyst materials with the specific catalytic functionalities present in Cu/BEA**
 - CuO versus Cu without Brønsted acid sites
 - Bronsted acid sites only
 - Cu(II)-zeolite versus Cu(I)-zeolite with Bronsted acid sites; without metallic Cu
Catalytic Testing

Isobutane Dehydrogenation Reaction

\[
\text{Catalyst} \quad 300 \, ^\circ\text{C} \quad \text{\(\rightarrow \)} \quad \text{\(\rightarrow \)} \quad + \, \text{H}_2
\]

Fixed-bed reactor experiments
- 100 mg\textsubscript{cat}
- 1\% i-butane/He at 7 sccm
- T = 300 °C
- P = 2 atm
- \(X_{\text{i-butane}} < 5\% \)

- **Catalysts containing ionic Cu species exhibit comparable isobutane dehydrogenation activities**
- **CuO nanoparticles, metallic Cu nanoparticles, and Bronsted acid sites are not active**
Determining speciation of ionic Cu during isobutane dehydrogenation

Cu speciation
- ox-IE-Cu/BEA is ~80% Cu(I) at 2 min TOS and ~100% Cu(I) by 2h TOS
- red-IE-Cu/BEA remains Cu(I) throughout the experiment
- no metallic copper observed

Ionic Cu(I) species are responsible for the observed dehydrogenation activity
Comparison of activation energies with previous reports1, 2 for Ga- and Zn-modified MFI suggest Cu/BEA should be less active than these.

May improve performance with bimetallic catalysts.

1 Y. Sun, T. C. Brown, \textit{International Journal of Chemical Kinetics} (2002) 34, 467

C$_4$H$_{10}$ Recycling during DME-to-HCs

Simulated C$_4$H$_{10}$ recycle to maximize C$_5+$ yield

- **DME + H$_2$**
- **C$_4$ alkane**
- **C$_4$**
- **DME-to-HCs**
- **increased C$_5+$ yield**

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Pressure (psig)</th>
<th>Co-feed C4H${10}$</th>
<th>Conversion (%)</th>
<th>C$_5+$ Selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>3</td>
<td>N</td>
<td>20.0</td>
<td>63.4</td>
</tr>
<tr>
<td>200</td>
<td>3</td>
<td>Y</td>
<td>19.2</td>
<td>63.4</td>
</tr>
<tr>
<td>200</td>
<td>25</td>
<td>N</td>
<td>23.3</td>
<td>68.8</td>
</tr>
<tr>
<td>200</td>
<td>25</td>
<td>Y</td>
<td>19.2</td>
<td>68.3</td>
</tr>
</tbody>
</table>

Mass spectrum of isobutene product

- **DME + H$_2$ + 13C-C$_4$H$_{10}$**
 - Minor decrease in yield with co-fed C$_4$H$_{10}$
 - Increased C$_5+$ selectivity with pressure
 - 13C-isobutene observed in products
 - Confirms dehydrogenation activity over Cu/BEA in the presence of DME + H$_2$
Simulated C₄H₁₀ recycle to maximize C₅⁺ yield

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Pressure (psig)</th>
<th>Co-feed C₄H₁₀</th>
<th>Conversion (%)</th>
<th>C₅⁺ Selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>3</td>
<td>N</td>
<td>20.0</td>
<td>63.4</td>
</tr>
<tr>
<td>200</td>
<td>3</td>
<td>Y</td>
<td>19.2</td>
<td>63.4</td>
</tr>
<tr>
<td>200</td>
<td>25</td>
<td>N</td>
<td>23.3</td>
<td>68.8</td>
</tr>
<tr>
<td>200</td>
<td>25</td>
<td>Y</td>
<td>19.2</td>
<td>68.3</td>
</tr>
</tbody>
</table>

27.7% DME
27.7% H₂
44.6% 1% C₄H₁₀/Ar
WHSV = 0.6 h⁻¹

Mass spectra of C₅ and C₆ products

- Indicates ¹³C-C₄H₁₀ reincorporation into C₅⁺ products
Bioenergy Technologies Office

Process Design for Biomass to High-Octane Gasoline

Feedstock
- Woody Biomass

Leveraging gasification & syngas cleanup
- Feed Handling & Preparation
- Gasification (Indirect Circulating Dual Fluidized Beds)
- Gas Cleanup (Tar Reforming, Syngas Scrubbing, Compression)

Heat Integration & Power Generation

Leveraging commercially available technologies
- Methanol Synthesis (Acid Gas Removal, PSA, Methanol Synthesis)
- Methanol Recovery (Syngas/Methanol Separation, Degassing)

Fuel Gas
- High-Octane Gasoline Blendstock
- DME + C4 Recycle

Advanced fuel synthesis technology

HOG Product

BEA: 40 gal/dry-ton biomass; $5.20/gal
Cu/BEA: 56 gal/dry-ton biomass; $4.54/gal

- 13% reduction versus HBEA catalyst, $0.66 absolute
- 40% increase in yield per dry ton versus HBEA
- Requires high-productivity Cu/BEA and C4 reactivation at Cu⁺ sites (not HBEA)
- Recall MOGD at $4.80/gal for gasoline and distillate from biomass
Considering the observed C_4H_{10} conversion

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Pressure (psig)</th>
<th>Isobutane Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>3</td>
<td>14.5</td>
</tr>
<tr>
<td>200</td>
<td>25</td>
<td>23.2</td>
</tr>
</tbody>
</table>

- Conversion values are remarkably high compared to the thermodynamic considerations of isobutane dehydrogenation at 200 °C (< 1% expected)

- Suggests that the observed reactivity is *kinetically driven*, presumably through consumption of the products – isobutene and H_2
 - Similar to product removal concepts that drive methanol/DME synthesis, condensation reactions, etc.
 - Dehydrogenation inside the zeolite pores at ionic Cu sites near H^+ sites

- Methylation and H-transfer rates of isobutene over HBEA were reported to be 33 and 38 μmol/mol$_{\text{Al}}$/s
- Our C_4H_{10} conversion rate was 7.2 (3psig) and 11.5 (25psig) μmol/mol$_{\text{Al}}$/s

A market-responsive biorefinery concept around methanol

- Conversion of C_1 intermediates (methanol/DME)
- Non-FT, non-MTG/MOGD route
- Three common fuels from this process
- Balance production of each to meet market needs
Distillate production from HOG olefins

Representative olefin mix from DME-to-HC (mol%)

- Simple vacuum distillation removes unreacted light C\textsubscript{7}-C\textsubscript{8}
- Carbon numbers are similar to commercial jet fuel (C\textsubscript{8}-C\textsubscript{20})
- No “heavies” (>C\textsubscript{22})

Product meets ASTM specifications for density, viscosity, heat of combustion, freeze point, distillation curve
Incorporating Distillate Production into the TEA model

- **HOG only (Cu/BEA):** 56 gal/dry-ton biomass; $4.54/gal
- **HOG and Distillates:**
 - 29 gal-HOG/dry-ton biomass
 - 20 gal-jet/dry-ton biomass
 - $4.71/gal

- Slight decrease in total yield, minor increase in cost vs HOG-only
 - Adding additional cap-ex to convert only a portion of the product
 - Distillate yield is limited by paraffin:olefin ratio in HOG product
 - Recall MOGD at $4.80/gal for gasoline and distillate from biomass
Summary

Conclusions

- TEA can be coupled with R&D to direct and understand the value of catalyst improvements
- Developed an inexpensive Cu/BEA catalyst with 2-3X improved productivity and extended lifetime
- Cu/BEA reactivates and reincorporates isobutane in the presence of DME + H₂
- Results in 40% increased yield and 13% reduced cost versus HBEA in the process model
- Distillates can be produced, but with additional cost

On-going R&D

- Computation suggests Zn(2+), Ga(3+) should be more active for isobutane dehydrogenation than Cu(1+)
- Developing bimetallic catalysts to control P:O ratio in HOG product
 - Control HOG fuel properties and distillate yield
DME-to-Fuels Research Team

Catalyst Development Team
Jesse Hensley
Carrie Farberow
Eric Nelson
Gary Grim
Joshua Schaidle
Anh To
Susan Habas
Glenn Powell
Connor Nash
Dan Dupuis
Matt Yung

NREL Fuel Property Analysis
Earl Christensen

ANL XAS Collaborators
Ted Krause
Jeff Miller

ORNL TEM Collaborators
Kinga Unocic

Technoeconomic Analysis
Eric Tan
Abhijit Dutta
Thank you!

Daniel Ruddy
Dan.Ruddy@nrel.gov

March 7, 2018